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FOREWORD -

This report describes an investigation of fatigue crack growth inter-
action effects in airframe structural materials performed by the Grumman
Aerospace Corporation from June 2, 1972 through October 2, 1974 under Air
Force Contract F33615-72-C-17 4 4. A portion of the analytical and experimental
effort was subcontracted to Del Research Corporation and to Del West Associ-
ates, Inc.

The work was sponsored under Project 486u, "The Advanced Metallic
Structures - Advanced Development Program" (AMS-ADP), Task 486U02, "Applied
Fracture Mechanics" Air Force Flight Dynamics Laboratory (AFFDL) with
Mr. Robert M. Engle (AFFDL/FBE) as project engineer.

The program was conducted by structural mechanics personnel of the
Grumman Aerospace Corporation under the supervision of F. Berger, Manager,
Advanced Development Systems Engineering. The Project Engineer was A. Wolfman.
The principal investigator was P. D. Bell and program test engineering and
coordination was provided by S. Hoops. Technical and experimental support
was provided by Drs. P. Paris and R. Bucci and program support was provided
by D. Schmidt of Del Research Associates. Dr. M. Creager provided technical
and experimental support and W. Renslen provided program support for Del West
Associates, Inc.

This report was submitted by the authors on October 1, 1974.

A second volume, containing all raw data generated under this program,
is available upon request. Send requests to:

AFFDL/FBE
Attn: R. M. Engle
Wright-Patterson AFB, OH 45433
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LIST OF SYMBOLS

a - Crack length for compact tension specimens; half-crack length
for center cracked panel specimens (inch)'

a - Crack length at which an overload(s) was applied (inch)
0

a - Crack length which defines the extent of the material elastic-
plastic interface.

a - Difference between crack length and reversed plastic zone radius,
a-r (inch)Y

a - Crack length at start of current cyclic loading (inch)s

at - Incremental crack front tunneling (inch)

Aa - Crack growth increment (inch)

Aa* - Crack length over which transient crack growth conditions exist
(inch)

B - Empirical exponent in decreasing closure equation, also
designation for one block (cyclic loads within one block are
repeated)

b - Dimension along crack (inch)

C - Empirical crackgrowth coefficient

C' - Empirical crack growth coefficient

Cf - Crack closure factor, ratio of K to K (or K), or S to S
(or S), or P to P max (or P)

Cf' - Modified crack closure factor

Cf - Crack closure factor at R = zero

0

C - Empirical parameter used in Wheeler retardation model
P

vii



CCP - Center cracked panel specimen

CTA - Compact tension specimen, ASTM geometric proportions =

CTB - Compact tension specimen, modified geometric proportions

COD - Crack opening displacement (inch)

CC 2 - Constants for crack closure instrumentation

c - Surface crack half-length, dimension along crack (inch)

d - Dimension from crack tip to closure gage (inch)

da
- Crack growth rate (inch/cycle)

da
d-- - Crack growth per block (inch/block)

f - Normalized crack growth rate, ratio of measured crack growth rate
n to calculated constant amplitude crack growth rate

K - Stress intensity (ksii/T{-h)

K - Stress intensity calculated using the stress or load at which
crack closure occurs (ksiV'Thnh)

K - Critical stress intensity (ksi/-nch)cr

K - Maximum stress intensity (ksiVin-ch)
max

K - Maximum stress intensity caused by an overload (ksiV'n-ch)maxOL

K .- Minimum stress intensity caused by an ov-erload (ksi/'nc)

minoL

K min - Minimum stress intensity (ksi/Th•h)

K - Residual stress intensity (ksii-n-ch)r

Kst - Stress intensity at which stable tear reaches measurable propor-
tions (ksi/i-nch)

viii



AK - Stress intensity range, Kmax - Kmin (ksiVi-nch)

AKb - Stress intensity range for baseline loading (ksiV/IF•)

AKeff - Effective stress intensity range, K - K or
K - K (ksi/inch) max cmaXO c

OL
AKefft - Effective stress intensity range threshold,

K - K (ksiVIn-ch)
max c

AK - Stress intensity range threshold at which the crack growthrate is apparently zero (ksiV'7_-h)

AKth -AKth at R = zero (ksi/ii7•h)
0

.m - Empirical exponent used in Wheeler retardation model

N - Cycles of load

n - Empirical crack growth exponent

n? - Modified empirical crack growth exponent

ND - Number of delay cycles

N - Cycle count at which an overload(s) was applied0

NOL - Number of overload cycles

Nsat - Number of overload cycles required to produce stabilized closureand, subsequently, maximize retardation

AN - Cyclic increment

AN - Number of load cycles since load changeS

O/L - Overload ratio, ratio of P to P (or P to P )m or S to S
(or SOL toSm ) OL OL max xOL

P - Applied load, also maximum applied baseline load (lb)

P -°Load at which crack closure occurs (lb)
c
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P - Maximum applied baseline load (lb)
max

P min - Minimum applied baseline load (lb)

POL - Overload, maximum applied load (lb)

p - Empirical exponent in crack closure equation

q - Empirical crack growth constant

R - Stress or load ratio, Smin/Smax or Pmin/Pmax

- Stress ratio equal to either the applied stress ratio or the

stress ratio cutoff value, R 0 whichever is lessco'

R - Ratio of closure stress or load after a few overload cycles to

the previous (baseline) closure stress or load

R - Stress ratio cutoff value above which crack growth rates are
co not stress ratio dependent

r - Reversed plastic zone radius (inch)

Y

S - Applied stress, also maximum applied baseline stress (ksi)

S - Stress required to extend plastic zone from current crack
ap length to elastic-plastic interface (ksi)

S - Stress at which crack closure occurs (ksi)c

S' - Modified crack closure stress (ksi)
c

S - Maximum applied baseline stress (ksi)max

S - Effective maximum stress (ksi)
maxeff

S min - Minimum applied baseline stress (ksi)

S - Effective minimum stress (ksi)
mineff
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SOL - Overload, maximum applied stress (ksi)

S - Subscript p indicates previous stress or load (max, min, c, etc.)P

S - Residual stress (ksi)
r

Sred - Reduced stress, Sap - S max, (ksi)

ASeff - Effective stress range, S max - S min or Smax (or S) -SC'
eff(ksi) maff mlff mx*

t - Specimen thickness (inch)

U -(l - Cf)/(l - R)

V - Displacement voltage from strain gages (volts)

V1  - Load voltage from load cell (volts)

W - Total width of panel specimens; dimension from load line to
extreme fiber for compact tension specimens (inch)

S- Relates residual stress to applied stress, a = S /S
r

- Plastic zone coefficient

y - Ratio of closure stress after a few overload cycles to the
stabilized closure stress after many overload cycles

r - Denominator in residual force model equation

S- Prefix, micro (10-6

p - Plastic zone radius (inch)

S- Material yield stress (ksi)

y
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SUMMARY

This program is one in a series of research and development programs
undertaken by the United States Air Force to develop methods and data needed
for design against fracture in military aircraft. This combined analytical
and experimental program was directed to an investigation of fatigue crack -
growth interaction effects under arbitrary spectrum loading conditions.

The test program consisted of approximately 160 specimens almost
equally divided between 2219-T851 aluminum and Ti 6A1-4V mill-annealed titan-
ium alloys. Compact tension and center-cracked panel specimens were employed.
All tests were performed under ambient laboratory conditions. The test pro-
gram included constant amplitude, single and multiple overload, compression
spike, tension/compression, compression/tension and simplified block loading
sequences.

The results of the experimental program were used to review existing
crack-growth prediction models and finally to develop a new crack-growth
prediction model which was based on the crack closure concept. The resultant
crack closure model predicts the crack growth during more complex loading
sequences than existing models. It considers negative stress ratios, number
of overload effects, and the effects of compression spikes with and without
or preceding or following a tensile spike or multiple overloads,
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1 - INTRODUCTION -

New facture control and damage tolerance criteria (Reference 1 for
example) are being developed and implemented to reduce the risk of the loss
of military aircraft due to the existence of crack-like defects in the air-
frame structure. These defects can occur through material processing or
fabrication techniques in a typical airframe component. As a result, the -
criteria specify that flaws be assumed to exist in critical structural loca-
tions and, further, that a component be designed in such a way that its life
expectancy meets or exceeds the specified life for the aircraft or inspection
interval before the flaw grows to critical dimensions. A necessary element -
in this concept is an analytical method of determining the sub-critical crack
growth caused by a typical aircraft load spectrum.

This program was initiated by the United States Air Force to modify
existing models or develop a new model to provide improved predictive
capability for the growth of cracks subjected to arbitrary load spectra. An
experimental program was conducted to obtain detailed information regarding
the behavior of cracks subjected to discrete and simplified variable-amplitude
loads. The materials tested were 2219-T851 aluminum and Ti 6A1-4V mill-
annealed titanium alloys, both typical aircraft structural materials. With
few exceptions, all tests were performed on 1/4 in.-thick specimens of three
geometries. The loadings employed ranged from constant amplitude to four-
level block spectrum loading, and included compression loads. Crack closure
measurements using three different techniques were obtained during many tests.
Crack growth data were obtained during all tests. The frequency of observation
varied, depending on the type of test conducted.

The analytical portion of the program consisted of two basic parts.
The first centered around the reduction and analysis of the crack growth data.
Crack closure data were investigated to a lesser extent. The second part
consisted of reviewing existing crack growth prediction models with an eye
toward their improvement, and the development of new models. The final mathe-
matical model was based on the crack closure concept.

Preliminary investigations indicated that the crack closure concept
could be used to explain a variety of crack growth interaction effects, in-
cluding retardation and acceleration and the effect of different numbers of
tensile overloads or compression loads on subsequent crack growth rates.
Therefore, the mathematical modeling effort in this program was directed
principally toward models which employed variations in crack closure to produce
effective stress ranges. The effective stress ranges were then used to cal-
culate modified crack growth rates.



It was further thought that since crack closure is a physical phe-
nomenon, insight could be gained through direct measurement of crack closure
during crack growth interaction tests. The testing portion of this program
revealed that it was quite difficult to obtain quantitative values of crack
closure during the transient crack growth caused by load perturbations.
However, qualitative trends could be observed. The problems encountered in
measuring crack closure are described in Sections 2 and 3 of this report.

Even though experimental difficulties were encountered, a model based
on crack closure behavior was developed that was found to predict a variety -
of crack growth interaction effects quite well. The development of this model
and some results obtained by its application are described in Section 4 of
this report.
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2 - MATERIAL AND PROCEDURES

2.1 MATERIAL SELECTION

The selection of the two alloys for flaw growth characterization was

based on the potential widespread utilization of the results from this program.

The materials selected were 2219-T851 aluminum and Ti 6A1-4V mill-annealed
titanium alloys. The crack growth data for these two materials, and the use
of that data in the development of crack growth interaction models, was ex-

pected to afford greater confidence in the utility of the results. That is, a

designer employing either material in a new design would have confidence that -

the crack life predictions obtained from the model would be reliable for these
two materials.

Each material was obtained in plate form from one material heat. This

was done to minimize the scatter which might be expected when comparing the

crack growth data from two different material heats. The aluminum plates were
nominally 5/8 inch thick while the titanium was nominally 3/4 inch thick.

Since a limited thickness effect investigation was included in the program,

all plates were mill polished from the as-received thickness to the required
specimen thickness. In this way, the material homogeneity was maintained and
the polishing process introduced minimal surface residual stresses.

2.2 TESTING PROCEDURES

Fatigue crack growth tests were performed using a variety of closed-

loop servo-hydraulic testing machines. Different machines, which will not be

listed here, were employed for economy in testing the various geometries and

because the testing was performed in three different laboratories. One machine

utilized a computer control, while others employed paper tape control to per-
form the two-, three- and four-level block loading tests.

Crack growth measurements were obtained optically from the surface of

the specimens. In many cases, the surface crack lengths were measured on both

sides of the specimen. The optical instruments were matched to the type of

test performed so that low-power instruments were used where gross values of
crack length increments (>0.030 inch) were required whereas high-powered

instruments were used at the other extreme. These latter instruments provided

the capability of directly reading the crack length to 0.001 inch.

Testing frequency varied according to the machine, material and

specimen geometry. In most cases, the cyclic frequency exceeded 1 Hz. All
tests were performed in a laboratory environment at ambient temperature and

relative humidity. The exception was that one compact tension specimen of

each material was tested under constant amplitude loading conditions in a 95%
relative humidity environment at various cyclic frequencies. The results from

3



these tests compared favorably with those from the laboratory air environment

and are reported in Section 3 of this report.

The ambient temperature ranged from 65 to 75 degrees F while the

relative humidity had a considerably larger range. Relative humidity measure-

ments are reported on the data sheets included in Volume II.

Crack closure measurements were performed using two different tech-

niques. The procedures and equipment are reported in Subsection 2.4.

Material tensile properties were obtained from six aluminum tensile
specimens. For two thicknesses (1/4 inch and 3/4 inch), four titanium tensile
specimens each were used to obtain tensile properties for the titanium. All
tensile specimens were oriented in the longitudinal grain direction and were
selected randomly from the plates. The machine employed was a Riehle FH 60
Universal Testing machine and the extensometer was a DN-20 with a 2 in. gage
length. The material tensile properties are presented in Subsection 3.5.3.

All specimens were precracked at load levels selected to provide a
minimum amount of interaction with the test loads, or fast crack initiation,
or at the load level used for the test. All precracking loads are specified
in Volume II of this report.

2.3 SPECIMEN GEOMETRY

Three different basic specimen geometries were employed for this pro-
gram. These were the center cracked panel shown in Figure 1 and the two
varieties of compact tension specimen shown in Figure 2.

The center cracked panel (CCP) specimens were of nominally constant
geometry with a thickness of .25 in. and a width of six inches in the test
section. Crack starter notches were electro-discharge machined into one sur-
face of the specimens at the longitudinal and lateral centerlines. The
starter notches were of constant radius approximately 0.025 inch deep, 0.10
inch long on the surface and 0.010 inch wide. Some of the panels were loaded
in compression. To prevent column buckling, the panels were enclosed in a

stabilizing fixture which was separated from the specimen by Teflon liners.
One specimen was fitted with strain gages to ensure that the stabilizing
fixture did not pick up load through friction.

The compact tension specimens were of two geometries. Those tested
by the Del organizations were of the standard ASTM geometry except that the
thickness relationship specified for plane strain conditions was not retained.
These specimens are defined as CTA specimens in Figure 2. Almost all were
fabricated with dimension W = 2.5 inches. A few were fabricated with
W = 2.2 inches to economize on material so that the material heat would be
constant.

14



The compact tension specimens tested by Grumman were modified from the
ASTM proportions and are defined as CTB specimens in Figure 2. The basic
difference was that the height of these specimens was increased to provide
clearance for the Amsler "Movomatic" displacement gage (described in Sub-
section 2.4). The stress intensity solution for the CTB geometry is presented
in Appendix C.

All specimens were oriented with the load line parallel to the rolling
(longitudinal grain) direction so that the crack grew normal to the rolling
direction. -

Compact tension specimen identification numbers consist of a pair of
letters and two numerical pairs: (ie. AD-25-32 or TG-25-12). The first
letter designates the material (A=2219-T851 aluminum, T=Ti 6A1-4V titanium)
while the second letter indicates the testing laboratory (G=Grumman, D=Del
Research or Del West). The specimens with a D designation were all of ASTM
standard geometry (CTA) while those with a G were non-standard (CTB) or center-
cracked panels. The first pair of numbers represents the nominal material
thickness in hundredths of an inch while the second pair is the specimen
sequence number. A few compact tension specimens had duplicate sequence
numbers, so the lower case letter a was added following the sequence number.

In the case of center-cracked panel specimens, the system is the same
except that a P is appended (ie. AG-25-12P).

2.4 CRACK CLOSURE MEASUREMENTS

Preliminary analyses and the work reported by a number of authors
indicated that variations in crack closure might be used to describe a variety.
of crack growth interaction effects. Because of this, crack closure measure-
ments were obtained during many specimen tests. The objectives were to
quantify the crack closure level as a function of stress ratio during steady-
state constant-amplitude conditions, and to define how the closure level varied
during transient conditions such as during the application of overloads and
while the crack was propagating subsequent to the application of one or more
overloads. Measurements were also obtained during loading sequences in which
the maximum load was held constant and the minimum load was varied. In a few
cases, the minimum load was allowed to go into compression. Closure measure-
ments were also obtained during simplified block-loading sequences.

Although some authors have observed differences in the magnitudes of
the opening and closure loads, no significant differences were observed during
this program. As a result, the terms opening and closure are used inter-
changably and are considered to be the same value of load or stress.

Two different methods were employed to measure crack closure. The
first employed strain gages mounted across the crack tip, while the second
employed a mechanical displacement gage similarly located. These techniques
will be described below.
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The principal conclusion drawn from this investigation was that

meaningful quantitative values of closure could be obtained only during steady-

state conditions. These were either constant-amplitude loading or periodic

block-loading situations. In the case of periodic loading, the closure level
generally did not vary significantly within a block of loads and, as such,
approached steady-state conditions. Even for steady-state conditions, how-
ever, significant amounts of scatter were encountered. Generally, for a

given specimen and gage location, the results were repeatable. However, if
the gage was moved or if a different gage were employed, repeatability
deteriorated. The final conclusion drawn from these results was that quanti-
tative closure measurements, useful for modeling purposes, could not be ob-
tained using the methods described below. However, the data obtained did

prove useful from a qualitative standpoint and provided justification for
many of the assumptions made during the modeling effort.

Crack closure measurements made at Del Research and at Del West
utilized a technique developed by R. Schmidt (Ref 2) to measure crack closure.
The objective of the closure measurement was to monitor the relationship
between applied loads and the local crack displacements, and to note the load

level in this relationship where it becomes non-linear (See Figure 3).
Schmidt utilized an electrical resistance strain gage bonded to the specimen

at its ends only to measure local displacements, as shown in Figure 4, rather
than a mechanical device. In order to bond the gage only at its ends, a
piece of cellophane tape was placed beneath the gage along the projected
crack path prior to mounting. Micro-measurement EA-13-Z30DS-120 gages were
used for most tests in this program.

Note that it is not necessary to calibrate either the load or gage
output. The applied loads are known and the dimensions along the ordinate are
proportional to the applied loads. Therefore, the maximum and minimum applied
loads define the upper and lower extremes of the trace and intermediate values

may be scaled. The strain gage output is proportional to the local displace-
ments and the onset of non-linearity in the load-displacement record can be
observed. Since the absolute magnitudes of strain were not required, the
gages were not calibrated.

The determination of the exact load value at the onset of non-linearity

is somewhat subjective. This of course is equally true when similar measure-
ments are made with other displacement measuring devices. Personnel at Del
Research made the observation that sensitivity of the opening load measure-
ment could be increased if the linear contribution to the displacement were
subtracted. That is, rather than having a test output of load voltage (VI)
versus displacement voltage (Vd), electronics were placed in the instrumenta-
tion line which produced an output record of V1 versus (ClVd - C2 VI) where
CI and C2 are constants that were set during the test. By changing CI and C2,
a variety of outputs are possible (See Figure 5). This has been referred to

as a cancellation technique. When this method is used, the opening load
determination is less ambiguous than it is in the corresponding load-
displacement plot.
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Even with this additional technique, closure load determinations must
still be classified as a difficult experimental procedure. There are many
reasons for this. Outstanding among them is the fact that any test which
requires the determination of a non-linear point requires an arbitrary defini-
tion of where that occurs. Determination of the proportional limit is an
example of this. The fact that the linear part of interest extends to the
upper portion of the load-displacement record, rather than to the origin, only
compounds the difficulty. It was found during many of the tests that the
load-displacement record consisted of three, rather than two, linear portions
as shown in Figure 6. The two discontinuities are referred to as the lower -

and upper bumps respectively. The significance of these two discontinuities
will be discussed below.

The closure load measurement is most successful when the closure level
is stable and a number of similar output records are available to be inter-
preted simultaneously. That is, it is far easier to measure the closure load
for constant amplitude loading than it is for tests in which there are over-
loads and transient closure load behavior. In fact, the more transient the
crack growth and closure behavior is, the more difficult it is to interpret
closure load records. This can be seen in Figures 7 through 9.

Figure 7a shows a plot of crack length vs cycles for a titanium
compact tension specimen subjected to essentially constant amplitude loading.
Figure 7b presents the applied maximum and minimum loads and the measured
opening loads. The data points are taken as the upper tangent point of the
load-displacement (eg. Figure 3) or load-voltage plots. Based on the results
from Gage No. 2, the closure level appears to have stabilized at about 250 lb
prior to the first load change at 810,000 cycles. Then, subsequent to about
820,000 cycles, the closure level is stabilized at about 350 lb. In these two
regions, where stabilized crack growth existed, meaningful quantitative values
can be obtained. However, during the transient period subsequent to the load
change (810,000 cycles to 820,000 cycles), the closure behavior is not well
defined.

Figure 8 presents similar results for a titanium specimen subjected to
a multiple overload (step) test where the overloads are 1.5 times the baseline
loading. Here, (Figure 8b) a differentiation can be made between the pre-
viously described upper and lower bumps. Prior to the first series of over-
loads (NOL = 1019), there is only one non-linear point (bump) on the trace
and the closure load is approximately 250 lb. When the overloads are applied,
two bumps were readily apparent. The upper one reaches a value of approxi-
mately 670 lb while the lower one reaches a value of approximately 350 lb.
Subsequent to the application of the overloads, both values decay to about
300 and 125 lb respectively. Experience has shown that the lower value
(125 lb) is far too low to represent a true closure level. The higher value
(300 lb) is 40% of the maximum applied load and experience also indicates that
this is a typical value for the closure level at this applied stress ratio of
0.05. (The stress ratio, R, is Pmin/Pmax.) This indicates that the upper
bump is the significant closure variable. The steady-state closure level
before the overloads is about one third of the maximum applied load, while
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afterward it is about 40% of the maximum. Using the maximum value (40%), the
stabilized closure load during the application of the overloads should not

exceed 450 lb (.40 x 1125 lb). However, it can be seen that, for both loading
sequences, the upper bump value easily exceeds 600 lb. Even on an expanded
scale, it was very difficult to define how the closure level increased during

the application of the overloads because of extensive scatter. Subsequent to

the overloads, the closure level returned to a stable value in an orderly
fashion. However, lacking end point values which are considered valid, it is
difficult to have much confidence in any expression fitted to the data.

Figure 9 presents crack length and closure load data vs cycles for a
titanium specimen subjected to single discrete overloads which were 1.25 times
the baseline loading. The closure load data (Figures 9b and 9d) are typical
examples of "good" data taken during this type of test. Referring to Figure 9b, .
the steady-state closure load prior to the overload application is approxi-
mately 315 lb or about 45% of the maximum applied load. (This value appears
to be slightly high based on other results.) Subsequent to the application of
the single overload, two bumps were readily apparent on the load-voltage
records. The lower bump would indicate a significant decrease in the closure
level, while the upper bump generally describes an increased closure level.
It will be shown later that increased closure results in retarded (reduced)
crack growth rates. Therefore, the upper bump again seems to best fit our
concept of how the closure level should behave. A close examination of these

data indicates that the closure level (upper bump) first decreases slightly and
then increases to a maximum, thereafter decaying to a steady-state level. The
initial decrease would result in slightly accelerated (increased) crack growth
rates immediately after the overload. However, it can be seen that the mini-
mum value immediately after the overload is approximately the same as the
stabilized value at the right-hand end of the data. This stabilized Value
(approximately 265 lb) is 38% of the maximum applied baseline load (700 lb)
and agrees closely with the steady-state values obtained from Figure 8b. Thus,
the initial value of closure before the overload is probably incorrect.
Assuming that the closure level prior to the overload is about 265 lb, a gene-
ral behavior can be defined: the closure level first increases to a value of
perhaps 370 lb (42% of the overload) and then it decays. Here again, it would
be difficult to reach any but the grossest conclusions as to how the closure
level actually varies. Figure 9d verifies this. The data shown there possess
extensive scatter and defy any attempt to quantify the results. Here, even
qualitative conclusions are difficult to reach.

Figure 10 presents similar data for an aluminum specimen subjected to

single discrete overloads. Although the closure measurements obtained from
aluminum specimen tests exhibited less scatter and the variations in closure
were more uniform than their titanium counterparts, the results were still
impossible to quantify.

Many more difficulties were encountered in the closure measurements
of titanium than those of aluminum. This could be attributed to two major
sources: the basic scatter in the material's response to load, and to the fact
that pin bearing friction problems arose in some of the tests. The increased
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loads in the titanium and its tendency to gall at the loading pin interfaces
were thought to be responsible for the latter problem.

Crack closure measurements made at Grumman utilized an Amsler
"Movomatic" model DBM 233 displacement gage. This instrument has an accuracy
of +1% of full scale and can measure displacements on the order of 10-5 meters.
The output from this instrument, along with a load signal, were put into an
X-Y recorder to obtain traces of load vs displacement typified by Figure 3.

Adaptors, developed to fit the instrument, allowed a minimum gage -
length of approximately 0.060 inch. An additional mechanism was devised to
accurately place the gage across the crack on the specimen.

The results using this gage were mixed. Whenever constant amplitude
loading was employed, the results, obtained by interpreting the load-
displacement traces, were repeatable. When the gage was relocated on the
same or on a different specimen, the closure level exhibited some scatter.
It was difficult to pick out the upper "bump" described earlier and, as a
result, closure variations during transient crack growth conditions could
not be defined using this technique.

Based on the results obtained in this program, the state-of-the-art
closure measurement capability is not sufficiently accurate to obtain the

*precise closure values required for modeling purposes. However, the advant-
ages of a crack closure-based model outweigh the experimental difficulties
which were encountered. Further, it will be shown in Section 4 that simpli-
fied assumptions of crack closure behavior can be used to yield reasonably
good crack growth predictions for a variety of loading sequences.



3 - RESULTS AND DISCUSSION OF TEST DATA

The test plan was developed to provide insight into the fatigue crack
growth behavior for constant- and variable-amplitude loading. Two materials
(Ti 6Al-4V titanium and 2219-T851 aluminum alloys) were tested under similar
conditions where possible, in order to determine whether or not differences
in material behavior exist from the standpoint of load interaction effects.

The test program was generalized in order to provide an evaluation
capability for existing crack growth retardation models as well as for any
new modeling efforts. Crack growth measurements were taken over small incre-
ments of crack growth (or small cyclic increments) before, during and after
load changes. This was done in an effort to discern all interactions which
might exist. When the crack growth was stabilized (i.e., constant amplitude
growth without previous load history effects) the crack growth increments
were increased. Many of the specimens were fitted with the Amsler "Movomatic"
gage or with strain gages so that load-displacement traces could be obtained.
These load-displacement traces were then used to obtain measured values of
crack closure and opening. Here again, the crack closure measurements were
made frequently near load change locations and less frequently after stabil-
ized conditions were attained.

Revisions in the original test plan were necessary since, originally,
compact tension specimens were to be used for certain load sequences involv-
ing compression loads. During the course of the test program, it was revealed
that the compact tension specimen does not provide accurate data during the
application of compression loads. Based on these results, the test program
was modified so that compression load sequences were applied only to center
cracked panels. Some earlier tests had already been performed on compact
tension specimens (ref. Tables 8a and 8b) and are reported here, although
little analysis of the results was performed.

3.1 CONSTANT AMPLITUDE TEST RESULTS

Constant amplitude fatigue crack growth tests were performed to
characterize the steady-state crack growth behavior of the two materials.
Table 1 shows the constant amplitude test plan for both materials.

It was known (Reference 3) that varying the stress ratio has a strong
effect on crack growth rates. The stress ratio, R, is defined as the ratio of
the minimum applied stress or load to the maximum applied stress or load.)
A variety of stress ratios, including R = -1, were tested. Since it was
desired to obtain da/dN data over the range 10-7 to 10-4 inch/cycle, the
allowable stress (or load) ranges were limited. Initially, it was desired
to investigate whether or not a stress level effect existed during constant
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amplitude loading. A stress level effect on crack growth rates is defined
as: for constant values of stress ratio and stress intensity range, the crack
growth rate is a function of the maximum applied stress. For the limited
stress ranges tested, no stress level effect on crack growth rates was observed
for either material.

Three different specimen geometries (CCP, CTA and CTB) were used for
each material to obtain da/dN data to insure that specimen configuration was
not a factor in determining crack growth rates. Crack growth rate data was
not obtained at each stress ratio investigated using each of the specimen -

types. Based on the test results, specimen geometry did not influence the
crack growth rate data except for negative values of stress ratio. In the
latter case, it was found that the compact tension specimen produced erroneous
results when subjected to compression loads.

3.1.1 2219-T851 Aluminum Results

Figures lla through lld show crack growth rate, da/dN, plotted against
applied stress intensity range, AK, for the 2219-T851 aluminum for a variety
of stress ratios. The figures show that as the stress ratio, R, is increased,
the crack growth rate increases for the same value of AK. This is true up to
a stress ratio of approximately 0.5, a value determined analytically. For
stress ratios greater than this value, there appears to be no further layering.

The data were fitted to a modified Elber equation of the form:

= C [(i + qR) AX1n (1)

A least squares procedure was used to fit the data to Equation 1. The stress
ratio cutoff value, Rc0, above which no further layering occurred was deter-
mined analytically by varying the value of Rco, such that for R < Rco, R = R,
but for R > Rco, B = Rco. The parameter q was considered to be an empirical
constant. However, independent studies on a variety of materials have indi-
cated that it generally ranges between .6 and .8, suggesting that q may have
a physical significance. The parameters q and Rco were varied systematically
and, for each pair a least squares analysis was performed for C and n. The
total error was determined for each set of four parameters. The least total
error produced:

C = 1.96 x lo-9

n = 3.34

q =0.6

R =0.5
co
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so that:

da = 1.96 x 10-9 [( + .6R) AK] 3.34 0 L R <_ 0.5 (la)
dN

da = 1. 96 x 10-9 [1.3 AK] 3-34 R 2ý .5 (lb)
dN "

The test data for R = -l were not included in the least squares analysis.

Figure 12 presents da/dN vs. AK data for 2219-T851 aluminum specimens
subjected to stress ratios of -1. For reference, Equation la is shown for the
case of R = 0. Two CTB specimens were subjected to a fully reversed loading
of 500 lb and one CTB specimen was subjected to a fully reversed loading of
700 lb. In all cases of R less than 0, the stress intensity range was calcu-
lated using Kmin = 0. It can be seen from Figure 12 that there is a layering
of the data for these specimens such that the specimens subjected to 500 lb
produce slower growth than the specimen subjected to 700 lb at the same value
of AK. At the same time, the slope of the three sets of data is nominally
2.49 while the overall slope of the positive stress ratio data is 3.34. The
test data for a center cracked panel is shown to lie parallel to the positive
stress ratio data and agrees both in terms of the nominal slope and the crack
growth rate at a given AK. Data presented in other references (e.g. Ref 3)
indicate that this latter behavior is typical for some aluminum alloys.
Although only one test with a negative stress ratio was performed on a center
cracked panel, it is felt that the result was valid. The AK for the CCP
(AG-25-7P) data was calculated using Kmin = 0, such that AK = Kmax to produce:

da 2.6o x 10-9 (Kmax)3, 4  (2)
dJN

One CTB specimen (AF-50-01) which was 1/2 inch thick was tested at a
stress ratio of 0.05 to obtain an indication of whether or not thickness was
a factor for the aluminum. These data nominally exhibit the same da/dN vs. AK
behavior as the 1/4 inch data, as shown by Figure 13.

One 2219-T851 aluminum specimen was tested in 95% relative humidity
with cyclic frequencies ranging from 1/2 to 10 Hz to insure that the results
obtained by testing in laboratory air at various cyclic frequencies were not
sensitive to humidity variations. The data from this test are presented in
Figure 14 and compared to Equation la. These results show that the aluminum
is not sensitive to variations in relative humidity or cyclic frequency.

3.1.2 Ti-6AI-4V Titanium Test Results

Figures 15a through 15e show da/dN plotted against AK for the Ti:.6A1-4V
titanium alloy material. The figures show that, as the stress ratio increases,
da/dN increases for constant AK. In the case of the titanium, there is no
apparent cutoff of this stress ratio effect up to the maximum tested value of
R = 0.7.
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The positive stress ratio data were fitted to the modified Elber equation
(Eq 1) using the same procedures as for the 2219-T851 aluminum to produce:

C = 5.90 x 10-10

n = 3.08

q = 0.7 =

R > 0.7
co

so that

da = 5.90 x [(1 + 0.7R) AK] 3.08 for 0 < R < .7 (lc)

Since Equation ic was fitted to data for the range specified (0<R<.7), its
validity is undefined for R>0.7.

For the R -1 data,

da 1.11 x 10-9 (K )3.08
dN max (3)

In Equation 3, Kmin = 0 such the AK Kmax

One CTB specimen (TG-75-01) which was 3/4 inch thick was tested under
constant amplitude conditions to obtain an indication of the effect of thick-
ness. Figure 16 presents the limited test data obtained and compares them to
scatter bands taken from the 1/4 inch data (Figures 15a and 15c). Although
the slopes of the data in Figure 16 tend to be greater than the equivalent
1/4 inch data, the bulk of the 3/4 inch data lie within the 1/4 inch material
scatterbands. Based on the limited data available, no definite conclusions
can be drawn regarding the effect of thickness on crack growth rates in
titanium.

The titanium data exhibits an apparent threshold effect for low values
of AK. At a value of da/dN of approximately 10- inch/cycle, the slope of the
data in Figure 15a becomes much higher than that of the data above 10-6 inch/
cycle. This effect was not accounted for in developing Equation 1c.

Figure 17 presents da/dN vs. AK for all data with a stress ratio of
0.05. Equation le is shown along with a scatter band which encompasses all
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but the most widely scattered data. At a given value of AK, the upper bound
of the scatter band is approximately twice the mean behavior (Eq ic) while
the lower bound is approximately one half of the mean behavior. Therefore,
if Equation lc were used to calculate the life of a titanium constant amplitude
test specimen, the results could be from one half to two times the test life.
The magnitude of this scatter is much greater than the equivalent aluminum
results.

One CTA titanium specimen was tested under constant amplitude condi-
tions with a relative humidity of 95% and cyclic frequencies ranging from 1/2
to 25 Hz. These results, shown in Figure 18, indicate that the specimen
tested under these conditions produced nominally the same crack growth behavior
as those specimens tested in laboratory air.

3.2 SINGLE OVERLOAD TEST RESULTS

The effects on subsequent crack growth of single overloads were
examined. The test matrix was developed in order to examine three possible
situations for both materials investigated. The first was to determine the
effect on subsequent crack growth rates of the application of a single over-
load. In this case, the crack was propagated under constant amplitude loading
conditions, a single overload cycle was applied, and the crack was then cycled
under constant amplitude loading until stabilized crack growth behavior was
regained.

In the second case, two single overloads were applied in such a manner
that the second overload was applied while the crack was still growing under
the influence of the first overload. In the case of the titanium specimens,
the affected length, Aa*, caused by the overload, was extremely small (on the
order of .001 to .010 inch) and this condition of interaction could not be
achieved. (The dimension Aa* is that crack growth increment subsequent to
overload(s) during which the crack growth is influenced by the application of
the overload(s).)

The third situation investigated represented, in a simplified manner,
the behavior seen in typical aircraft spectra. Here, single overload cycles
were applied at various frequencies of occurrence (i.e., repeated applications
of 1 cycle of overload followed by N cycles of baseline loading).

For the three situations investigated, up to four overload ratios,
O/L, were used. The overload ratio, O/L, is defined as the overload stress
(or load) divided by the maximum baseline stress (SoL/S) or load (P /P).
For the 2219-T851 aluminum, nominal values of O/L = 1.25, 1.5, 1.8 and 2.1
were used. Values of 1.25, 1.5 and 1.8 were used for the Ti 6Ai-4Vtitanium.
Table 2 presents the test matrix for all single overload tests performed on
both materials.
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Crack growth measurements were obtained during all sequences. For
many tests, these data were obtained over very small crack growth increments
(e.g., .001 to .002 inch). In addition, crack closure measurements were
obtained during many of the tests.

Because the mathematical model developed during the program is based
on crack closure, many references to closure behavior will be found during
the ensuing discussion. In many cases, it is a convenient way to visualize
physically why crack growth interaction effects take place.

3.2.1 2219-T851 Aluminum Test Results

Single Overloads - The objectives of these tests were to obtain
detailed crack growth and crack closure measurements during and subsequent to
the application of single overloads, and to quantitatively define the effects
of those overloads on subsequent crack growth behavior. The data were analyzed
by plotting crack length, a, vs. N and the normalized crack growth rate, fn,
vs. crack growth increment after each overload for various overload ratios.
The normalized crack growth rate is defined as the ratio of the measured
crack growth rate to the calculated constant amplitude rate under the current
loading. The calculated constant amplitude rate neglects any effects of load
interaction. Each specimen tested was subjected to from three to about ten
overload sequences (referred to as events). Only a few pertinent events are
presented here.

Figures 19 through 26 present overall a vs. N data for several
specimens subjected to disciiete overload applications. Data of this type
proved to be of little value for analysis purposes. However, detailed a vs.
ANs plots (ANs is the number of cycles since the overload) such as those shown
in Figures 27 through 30 were more useful. The figures present data and two
or more calculated constant amplitude crack growth curves for specimens sub-
jected to three different overload ratios (1.5, 1.8 and 2.1). (The overload
ratio is the ratio of the overload stress or load to the maximum baseline
stress or load.) The constant amplitude curves were introduced as an aid in
analyzing the data to determine the number of delay cycles and the crack
growth increment where unretarded (constant amplitude) crack growth conditions
were re-established. Figure 27, for example, shows two calculated constant
amplitude curves. The curve on the left represents the expected crack growth
behavior in the absence of the overload. The curve on the right is identical
to the first except that it has been translated to the right by approximately
3600 cycles so that it provides a reasonable approximation to the stabilized
crack growth behavior when the crack length is greater than about 0.51 inch.
The number of cycles between the two curves (in this case 3600) is defined as
the number of delay cycles, ND.

When this method was used, the crack length and value of ND at which
the retarded crack growth returned to constant amplitude behavior could be
determined and it eliminated the scatter encountered when other methods were
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used. As a further convenience, the calculated plane strain and plane stress
plastic zone radii caused by the maximum overload stress intensity are also
shown. It appears that the plane strain plastic zone is in best agreement
with the data.

Figure 28 presents similar data for specimen AG-25-2P which was sub-
jected to single discrete overloads where the overload ratio was 1.5. This
particular figure (event) exhibits extensive scatter. However, the overload
stress intensity for this event is almost identical to the preceding case and
is therefore useful in the following discussion. The effects of the scatter
can be reduced by applying the same approach as for the previous case. Here,
however, three constant amplitude curves have been constructed and it can be
seen that the central curve best fits the overall crack growth behavior for
the crack lengths exceeding the plastic zone radii. Even though the data
points oscillate about the central curve, it is reasonable to assume that the
nominal crack growth behavior is best described by the central curve.

The values of ND for the four conditions shown (Figures 27 through 30)
are plotted against the baseline stress intensity range, the maximum overload
stress intensity, and the overload ratio, in Figure 31. In the central
figure, there are two pairs of data at approximately equal values of KmaxOL.
It would seem that this parameter would have a significant effect on
the number of delay cycles, but it can be seen that no consistent trend
exists. The overload ratio best correlates the data. The right-hand figure
shows a consistent trend of increasing ND with increasing overload ratio. It
can also be seen that at an overload ratio of approximately 1.4, ND equals
zero. This result differs from the expected result. For example, Reference 4
indicates significant delays (large values of ND) for 2024-T3 subjected to an
overload ratio of 1.5. Similarly, Reference 5 shows large values of ND for
two successive overload applications at an overload ratio of 1.5 in 7075-T6511
aluminum alloy.

The minimum effective overload ratio value of 1.4 determined in this
program is supported by the results of Figure 32. This figure presents a por-
tion of the data of Figure 19 on an expanded scale. The calculated constant
amplitude behavior is also shown. For the two events shown, where the over-
load ratio was 1.25, the overloads have negligible effect on the overall crack
growth. Referring again to Figure 31, it can be seen that the number of delay
cycles increases quite rapidly with increasing overload ratio. The limited
data here indicate that an overload ratio of, for example, 2.5 would produce
such a large value of ND as to constitute crack arrest. Additional testing
would be required to demonstrate whether or not this conclusion is valid.

The number of delay cycles also depends on the crack length at which
each overload is applied. Specimen AG-25-2P (reference Figure 28) was sub-
jected to eight overload sequences. These results are presented in Table 3.
It can be seen that, as the crack length at which the overloads were applied
increased, there was an orderly increase in the number of delay cycles. The
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first case (Table 3) indicates that the crack propagated more quickly after
the overload application than it might have without the overload, as
evidenced by the negative value of ND. This result is probably due to data
scatter. The last three events occurred when the overload stress intensity
was close to or exceeded the stable tear threshold, Kst. (The stable tear
threshold is defined in Subsection 3.6.1 as the stress intensity above which
stable tear reaches measurable proportions.) The value for aluminum was
estimated to be 30 ksi Vin. Because of the potential for stable tear, the
last three values of ND in Table 3 may be invalid.

It can be concluded that the number of delay cycles is an increasing
function of the crack length at which a single overload cycle is applied and
of the overload ratio. Overload ratios less than approximately 1.5 produce
essentially no retardation while an overload ratio greater than 2.1 is required
to cause crack arrest. For this method of analysis, the plane strain plastic
zone radius caused by the overload stress intensity provided the best descrip-
tion of the overload-affected crack length. It is shown in Section 4 that,
from a modeling standpoint, the use of the plane stress plastic zone provides
a good fit to the data. This apparent contradiction will be discussed further
there. Upon reviewing all of the a vs. N and a vs. ANs curves presented here,
it was concluded that the crack growth exhibited immediate retardation sub-
sequent to the application of a single discrete overload. No delayed retarda-
tion is apparent.

Another approach used to evaluate the crack growth data subsequent to
the application of a discrete overload was to analyze the detail crack growth
rates. It was found to be very difficult to quantitatively characterize the
crack growth behavior on this basis for two principal reasons. First, the
crack growth increment over which the transient phenomenon occurs is very
small for the 2219-T851 aluminum and even smaller for the Ti 6A1-4Vtitanium.
Secondly, the data, when viewed in this manner, exhibits extensive scatter.
This can be seen from the typical test results presented in Figures 33 through
36.

These data are for a series of three nominally identical tests for a
single overload (O/L = 1.25), applied to an aluminum specimen. Figure 33 is
simply a plot of crack length versus the number of cycles since the overload.
Figures 34 through 36 are various attempts at analyzing the data. The first
was a simple plot of Aa/AN as a function of growth since the overload for
each increment of growth recorded. As can be seen in Figure 34, a pattern
is observed but a quantitative description of the behavior is impossible.
Note that the isolation of a single test might cause the observer to describe
"delayed retardation", "initial acceleration", etc. When viewed as a whole,
the three data sets do not allow the observer to draw any quantitative con-
clusions and reduces one's confidence in qualitative descriptions as well.
The instantaneous rate data is simply not reproducible.
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In an attempt to clarify the situation, a plot of total average growth

rate since the overload versus crack growth since the overload, a-ao/N-No vs.
a - ao, was made. (See Figure 35). As can be seen in the figure, a large
amount of scatter was present for the initial period of growth in this data
reduction as well. However, after about .008 inches of growth, the averages
stabilize and in fact are ordered by increasing values of stress intensity
factor (absolute crack length). Since our crack growth measurements are far
more accurate than the scatter in the earlier portion of Figure 35, we believe
Figure 35 implies that crack growth under nominally identical conditions is
only reproducible in an average sense over distances on the order of .008 inch.
For other test conditions (e.g. different stress intensities or materials),
the actual number may be somewhat different. It is believed that this occurs
because of material inhomogeneity, oscillation of crack growth on either side IM
of the crack, tunneling, minor load variations, etc. No experimental technique
is known which will eliminate this problem.

In light of the above result, rates averaged over each .008 inches
were plotted for these same data. (See Figure 36). Although this decreases
the scatter as compared to Figure 34, which is essentially rates averaged over
.002, we feel that quantitative evaluations are still not possible.

Delayed Retardation - The above discussion'and figures clearly illus-
trate that the cirack propagation data "immediately" after an overload cannot
be established with any meaningful degree of accuracy. To define "immedia-
tely", we use a set of typical curves showing da/dN versus the number of
cycles since the overload (Figure 37). Figure 37a is taken from Reference 5.
Figure 37b is a replot of the same data on a linear scale. Data obtained
during this program were not used for this example because they cannot be
represented meaningfully by such a plot. Although it is not clear from the
referenced paper, the data shown seems to be taken from an average of ten
striation measurements. This data is similar to curves presented in many
other papers. It is to be emphasized that in all of these papers, this curve
is presented as a schematic or a representation of one data set. Apparently,
all these authors are concerned with phenomenological descriptions and not
predictions, thus reproducibility of data and its use in a prediction scheme
were not of concern.

Returning to the definition of "immediately", the portion of Figure 37b
prior to the ordered return to constant amplitude rate is the immediate region
for which instantaneous rates cannot be accurately observed, measured and used
in a predictive model. A distinction between instantaneous rate and average
rate must be made. This is because, in the previous discussion, it was shown
that the average rate after some initial period was reproducible.

As mentioned previously, the lack of reproducibility in instantaneous
rate is not due to measurement limitations but seems to be due to the basic
variability of the material and its reaction over small distances. Also
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involved are interactions with tunneling and growth oscillations on either
side of the crack. The fact that the crack growth rate data immediately
after an overload is not available presents a significant problem. How
could a model be developed using this data to predict growth under general-
spectrum loading? One solution would be to show that this information is
not necessary and that only the average value is of interest. This is, in
fact, believed to be the case. It should be noted that if a material does
not behave reproducibly, except in an average sense, then only two possibili-
ties exist: 1) only that average can possibly be of importance, or 2) no -

predictions can be made, even by using data from a test which is identical to
the case which is to be predicted.

Referring again to Figure 37b, note that if the return from a minimum
rate could be classified as a transient phenomenon, the period of delay in

rate should be classified as a highly transient phenomenon and it would appear
that it would be unlikely to be of importance. This variation in the closure
stress intensity, Kc, that would produce the variation in crack growth rates
shown in Figure 37b is depicted schematically in Figure 38a. The closure
stress intensity, Kc, is calculated using the stress at which crack closure
occurs and the appropriate crack length. When an overload occurs, it sets up
the potential variation in Kc shown in Figure 38b. Note that by. utilizing
the variation of Kc with growth since the overload, rather than Figure 37b,
one can consider the many levels of loads' which may occur and still determine
how the retardation is affected. That is, one is not confined to considering
constant amplitude loading after the overload. An overload is now defined as
a load that interrupts the potential variation in Kc. First, assume that an
overload does not. occur until Kc has almost returned to its minimum value.
Obviously, the initial'highly transient phase does not contribute signifi-
cantly to the overall growth for this loading case. If this closure behavior
is typical of a particular spectrum, then any representation of the highly
transient region (including ignoring it), will produce essentially the same
crack growth prediction.

'This result is shown in Figure 39. The crack length vs. cycles curves
were calculated by numerically integrating the solid curve in Figure 37a to
produce the solid curve in Figure 39. The dashed curve (Figure 39) excludes
the highly transient portion of Figure 37a. In this case, the crack growth
rate was assumed to be described by the dashed line in Figure 37a. Figure 39
shows that, at the extent of the data (1000 cycles), the error in crack
length introduced by simply excluding the highly transient behavior is less
than 2 percent. By using a slightly higher curve than the assumed (dashed)
curve in Figure 37a, the life, calculated without the highly transient be-
havior, could be made to agree almost exactly with the life resulting from
the calculation which includes the highly transient behavior.. It is apparent
that the highly transient behavior can be neglected if an average crack
growth rate behavior is assumed, and further, that the minimum average assumed
rate will not be substantially different from the observed minimum rate.
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Now assume that an overload occurs at some point in the variation
right after the highly transient period. If this is typical of the spectrum
under consideration, then the early highly transient portion could have some
impact on the growth, but only the average of this transient period can be
of importance. That is, any model that produces the same average rate in the
highly transient period will predict the overall growth.

Lastly, assume that an overload occurs in the middle of the highly
transient period. Note that the crack growth since the previous overload in
this case will be very small. In fact, it will be much smaller than the
overload-affected crack length (plastic zone size). If this is typical of a
spectrum under consideration, then the behavior should essentially reproduce
the behavior during the periodic load tests in our test program, in which there
was little growth between overloads. In these tests it was observed that the
closure load remained constant for all loads in the sequence.

Thus, if additional overloads often interrupt the highly transient
period, the highly transient portion is eliminated. If the transient behavior
is interrupted only occasionally, the contribution of this portion of the spec-
trum will not affect the life significantly, just as it did not during the
first case considered. It has therefore been demonstrated that the only de-
scription of the highly transient period after an overload that is needed is
the average growth rate. In fact, this is only necessary for the particular
case of an additional overload being applied immediately after the highly
transient phase of a preceding overload.

Single Periodic Overload Test Results - A distinction was made between
those tests which are periodic in nature and those tests which are not periodic
in nature. The reason for this is that, as a general rule, those tests which
are periodic display little transient behavior (i.e., highly changing rates).
Of course, in the extreme, if the periodicity is large enough, a periodic
overload test will look exactly like a single isolated overload test.. However,
most of the tests run were not of this nature. It would be expected that
modeling of both the periodic and isolated single overload tests would be done
in exactly the same manner. However, when reviewing the data, different
approaches should be used depending on whether or not transient behavior is
present.

In many of the periodic overload tests the closure loads remain
approximately constant. (This will be discussed in greater depth in a sub-
sequent portion of the text.) This fact makes the plotting of periodic over-
load data in other manners more appropriate. For example, one can consider
da/dN vs. AKb for a particular periodic overload test and thereby obtain in-
formation on the effective closure level for that test. As will be seen in
the bulk of the tests, the conditions under which these various plotting
techniques may be of value can be readily established.
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Figures 40a and 40b are typical closure measurement records taken from

"a test for which the overload factor, O/L, was 1.8 times the base loading and

"a single overload was applied every 1000 cycles. The data of Figures 40a and
40b were produced with different strain gages and the crack lengths for each

differed by about 0.2 inch.

Figure 40a includes many closure measurements. Although it appears
that the closure load decreases as more low cycles are applied, the drop is
not very significant. In fact, the closure load (actually opening load) made
during the application of the overload (which is the 1 0 0 1 st load) indicates -

that this apparent trend may not be real at all. When Figure 40 is considered,
it appears that a constant closure is probably the best interpretation of
what is occurring. The average closure load in a given test sequence is
plotted in Figure 41 for the entire test duration. It can be seen that an
average value of 400 lb for the entire test is a reasonable estimate.

The fact that, for periodic overload tests, the closure load is
essentially constant is not entirely unexpected. A constant closure level under
certain periodic overload conditions is consistent with our concepts of clo-
sure. It was pointed out in Section 2.4 that the application of periodic
overloads could be treated as an essentially steady-state condition. This can
be explained by the following. Consider the material in the crack tip vicinity
at a time immediately after a single overload within the periodic sequence.
If the subsequent low loads extend the crack by a small amount relative to the
affected length due to the overload, then each succeeding overload influences
material that has already seen a large number of previous overloads. Thus,
each additional single overload causes little change in the material state in
the crack tip vicinity (which has experienced many prior overloads) and there-
fore little change in the closure level will be brought about by that
particular load.

The clcsure load then may be expected to be comparable to the closure
load associated with a very large number of overloads prior to applying any
low loads at all. Thus, we reach two conclusions about this particular type
of periodic overload test. The first conclusion is that the closure level
remains essentially constant throughout the test. The second, is that the
closure level which occurs 'is the same as that which would occur due to a
large number of overloads. It will be seen that these conclusions can be
shown to be true from the data gathered, and that they can be very useful in
designing experiments which yield fundamental information about closure levels.
It is important to note that the constant closure approximation will only be
true when the nature of the periodicity is such that there is only a little
growth between overloads. By little growth we of course mean a small amount
of growth compared to the affected length (plastic zone) due to the overload.

Utilizing the fact that the closure load remains constant during
certain periodic overload tests, it is possible to describe a technique to
generate "closure data" (i.e., Kc/Kmax), indirectly using crack growth data in
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lieu of actual closure measurements. The technique uses the results of a

constant amplitude test (Test 1) and a periodic overload test (Test 2). The

number of cycles between overloads in Test 2 must be sufficiently small so

that there is little growth between overloads. In addition, the magnitude
and number of overloads must be sufficiently small so that virtually all of

the crack growth can be attributed to the low loads. No restriction on the

number of overloads for each periodic sequence is necessary. A better de-

scription will be obtained by considering actual data.

An example of a spectrum that would in most cases meet these require-
ments would be a periodic seqvience of two loads, one cycle of the first at a

level 1.8 times that of the baseline load, followed by 1000 baseline loads.

The technique depends on the following assumptions concerning such a periodic

overload test.

"* The closure level remained constant. That is, it did not change

as the crack grew and it was the same for each cycle in the spectrum;

"* The closure load was a function of the overload only, and was
predictable from constant amplitude closure measurements at the

same stress ratio as the overload.

"* Crack growth rates were predictable from the closure load and
constant amplitude rate data.

These conclusions suggest the following procedure for determining
closure loads, without actually making closure measurements. For simplicity,

we will consider R = 0 first.

Figure 42 is an example of the results obtained for the test described

above. Test I is a constant amplitude loading in which the stress intensity

cycles between zero and KI. In Test 2, the baseline stress intensity cycles
between zero and K2 . At regular cyclic intervals, an overload is applied to

produce KOL such that KOL = K2 . O/L, where O/L is the overload ratio. Con-

sider points on the Test 1 and Test 2 curves, which represent the same crack
growth rate. The stress intensity factor at these rates will be K1 and K2

respectively. The effective stress intensity ranges are:

AKeffl = K1 - Kc1 = Ki - K1  Cfo (4)

AKeff 2 = K2 - Kc 2 = K2 - KOL Cf = K2 - K2 • Cf 0 O/L (5)

where Cfo is the closure factor for R = 0. The closure factor is the ratio
of the stress intensity (or load) at which the crack closes to the maximum

stress intensity (or load.) Note that since the stress ratios are the same

for these tests (they are both R = 0), the value of the stress intensity at

22



the point where the crack closes, Kc, is found by multiplying the same
closure factor, Cfo, by each of the peak stress intensities (K1 and O/L-K 2
respectively).

In order for the rates to be equal, the effective stress intensities
must be equal:

AKeffl = AKeff 2

K1 K- .•cf = K2 -K2 Cf O/L

0 0

K -KI 6
C K 2 - K1 (6)
f 0 K 2*-O/L-K1

Similarly, Cf = Kc/Kmax could be found for any value of R simply by having
R, = P , /P for Test I and R = P . /(O/L-P ) for Test 2, both equal
1 min maxy1  2 mmn2 max2

to R.

The general result for Cf as a function of R is:

f (R) (Kmax Kmax )/(O/L max2 KmaxI

where

R P . /P = P . /(o/L • P ) 27)m.nI maxI mmn max2

Once Cf at some value of R was known, it would only be necessary to run
constant amplitude tests at the stress ratios of interest. (Overload tests at
each R value would not be needed.) For example, assume that the value of Cf
at a particular R was developed as described above and a constant amplitude1

test at another stress ratio was run. Call this Test 3. The test results might
be as in Figure 43. Since, at constant fatigue crack propagation rates the
effective K's must be the same:
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max3 f max3 max 1  f 1max1

Cf = (K - Km + C K max1)/Kmax3

max ( max1  max 1  a
3 1 3

Cf 1- (1-Cfl) (K /K
C3 f maxI max3=

where

K max3 AK 3/(-R ) (8)

Here, Kmax is the maximum applied stress intensity for either Test 1 or Test 3.
(Kmax 1 was previously referred to as KI). Using the relationship of Equation 4,

it is possible to construct the fatigue crack propagation curve at R = Rco.
Recall that the cutoff stress ratio, Rco, is that stress ratio above which no
layering of crack growth rates occurs. For 2219-T851 aluminum, Rco was found
to be 0.5 while, for Ti 6Al-4VVtitanium, no cutoff value was observed up to
the maximum stress ratio tested (0.7). The fatigue crack propagation rate
curve at R = Rco is the maximum extent of fatigue crack propagation rates
(with respect to AK). No stress ratio effect on crack growth rates is observed
for R > Rco.

If the closure factor, Cf, properly accounts for stress ratio effects,
then the calculated effective stress intensity range, AKeff, is independent of
stress ratio. That is, if data are plotted as da/dN vs. AKeff, all of the
data would fall along the same line regardless of the stress ratio at which
it was generated. From Equation 4:

1- Cf1

AKeff= (l- Cf) K max 1 = AK1 (9)

Once Cfl has been determined, the data may be replotted on a AKeff basis.

This corresponds to a horizontal shift on a log-log plot as shown in Figure
44. Since this line represents the behavior of all data (including those
where R > Rco), it also represents the extreme crack growth rate curve. That
is, on a rate vs. AKeff basis, no data points would be expected to fall above
this curve. It should be noted, however, that the value of Rco cannot be
determined by this method, since the extreme rate curve, properly constructed,
is independent of stress ratio.
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It has been previously reported (Ref 6) that the crack growth stress
intensity threshold is dependent on the stress ratio. Equation 9 predicts
threshold behavior which agrees conceptually with existing data on fatigue
crack propagation thresholds.' Replacing stress intensities in Equation 9
with threshold stress intensities:

A AKth
AKeffth 1-R ( f-C) (9a)

At R = 0,

AKeffth AKth (i - Cf ) (9b)
tho o _

where AKth° is the applied stress intensity range threshold at R 0. As

described earlier, AKeffth is a constant if Cf properly describes the crack

closure behavior. Therefore, we can write

I-R- (l - C AKth( - C 
(10)

o 0

or:

AK = AKth (1 - R) (10a)

so that the threshold value for any value of R is given in terms of the thres-
hold value at R = 0 for all values of R < Rco. For R > Rco, AKth = AKeffth.
These results are shown schematically in Figure 45.

These techniques will now be considered utilizing actual test data.
Figure 46 is a plot of da/dN vs. AKb for two periodic overload tests. In each
case, a straight line has been drawn which represents the predominant mass of
data over the range of 10-6 to 10-5 inch/cycle. Both of these tests were run
at R = .05. The above analysis can be modified to give an expression for
Cf. In this case:

AK2 -AK1
Cf .05 (O/L) 2 AK2 - (O/L) 1 AK1
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Choosing 3 x 10- 6 as the crack growth rate for calculating the AK's,
AK, = 8.7, AK2 = 12.6 and Cf. 0 5 = .33. This value is within the range of

measured values of Cf at R = 0.05 for the 2219-T851 aluminum data obtained
during this program. Measured values of Cf ranged from 0.28 to 0.55, as
shown in Figure 100.

3.2.2 Ti6Al-4V Titanium Test Results

Like the aluminum tests, the objectives of these tests were to obtain
detailed crack growth and crack closure measurements during and subsequent to

the application of overloads. The titanium test data were more difficult to
analyze than the aluminum data. This was principally due to the data scatter
which seems to be inherent in the titanium material. This will become
apparent after reviewing some of the data presented here.

Single Discrete Overloads - These tests were performed in the same
manner as the equivalent aluminum tests. Subsequent to the application of an
overload, the behavior of the crack growth on the specimen surfaces was some-
what erratic. Figures 47 and 48 present overall a vs. N curves for titanium
CTB specimens subjected to overloads with O/L values of 1.5 and 1.8 respec-
tively. Again, this type of data plot is not useful as an analytical tool.
Figures 49a through 49f show detail plots of a vs. ANs for the 18 overload
sequences in Figures 47 and 48.

Several observations can be made. The crack growth behavior sub-
sequent to each overload typically exhibits an initial slow rate which
eventually becomes approximately equal to the constant amplitude rate. Of the
18 sequences presented, only three exhibit delayed retardation. During the
stabilized crack growth portion, the rates are nominally constant amplitude
rates. Attempts to plot the normalized crack growth rate function, the ratio
of measured to calculated constant amplitude crack growth rates, fn, were
fruitless. This is because, although the general growth behavior is uniform,
the calculated rates exhibit excessive scatter. The general trend of the
data indicate that, as the stress intensity increases (crack length increases)
the number of delay cycles decreases. This is in direct contrast to the
aluminum results. Delay cycles vs. the stress intensity caused by the over-
load, KmaxOL, and vs. the difference between the overload stress intensity

and the baseline stress intensity, Kmax, are presented in Figure 50. It can
be seen that delay cycles decrease as stress intensity increases, but that
neither of the parameters correlates the data. The plane stress plastic zone
radius caused by the overload is shown for each sequence (Figure 49). For the
cases where the cracks are relatively short, these values are quite small.
The plane stress radii nominally describe the point where the crack growth
rates are stabilized. It is interesting to note that, for all of the
sequences, plane strain conditions predominate but that a plane stress plastic
zone best describes the crack length affected by the overload. Pertinent data
for all 18 overload sequences are presented in Table 4.
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The stress intensity at which stable tear begins is given in Sub-
section 3.5 as 72 ksi Vin. Only the last two events listed in Table 4 exceed
this value. Even so, the behavior of these data appears reasonable when com-
pared with the other data.

Single Periodic Overloads - Six titanium compact tension specimens
were subjected to single periodic overloads. Three specimens were subjected
to overload ratios of 1.8 and the balance to overload ratios of 1.25. The
crack length vs. cycles results for these tests are presented in Figures 51
and 52. Figure 51 shows that, for O/L = 1.8, when the frequency of occurrence
of the overload is increased from one application for every 1000 low-load
cycles to one application for every 500 low-load cycles, the life of the spe-
cimen is approximately halved. This implies that the overloads contribute
significantly to the crack growth behavior. Conversely, for O/L = 1.25 (Fig-
ure 52), when the frequency of occurrence is halved, there is no significant
change in the life of the specimens. (In this case, the lives seem to be
slightly longer.) These test results indicate that the effects of the over-
loads are independent of frequency of occurrence or do not affect the crack
growth rates at all.

Figure 53 shows that the overloads (O/L = 1.25) have negligible effect
on crack growth rates. In this figure, the average crack growth rate (includ-
*ing the growth due to overloads) is plotted against the stress intensity range
for the baseline loading. The crack growth rates obtained from equation lc
for the baseline loading are also shown. Although the actual rates are slightly
lower than those obtained from Equation 1c, the differences are generally quite
small. For the range of data shown in Figure 53, and using a frequency of
occurrence of 50 cycles, the crack growth between the overloads ranges from
about 10% of the plane strain plastic zone radius produced by the overloads
at the low end of the data to about 25% at the high end. The overloads should
have the greatest influence on the average crack growth rates when the growth
between overloads is the smallest (at the low end of the data.) However, it
can be seen that this is where the data most closely agrees with Equation 1c.
The conclusion obtained here is that when the overload ratio is 1.25 and the
frequency of occurrence exceeds 50 cycles, the overloads have negligible effect
on crack growth rates.

Figures 54 and 55 show that this is not the case when the overload
ratio is 1.8. There, the average crack growth rate is plotted against
AKb and AKOL respectively. It can be seen that the measured crack growth
rates are always less than those calculated from Equation 1c. Referring to
Figure 54, the actual rates range from about one third to about two thirds of
the calculated rates. Interestingly, these figures show that the absolute
value of the overload is more significant than .the frequency of occurrence of
the overload. For example, in Figure 54, the data for the two specimens where
the overload is 1440 lb are closely grouped even though the frequency of
occurrence of the overloads differs by a factor of two. Where the overloads
are 1870 lb, the crack growth rates are measureably lower.
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Using the method described for the aluminum data in Subsection 3.2.1

to determine the crack closure factor (Eq 7) at a crack growth rate of 4 x io-6

inch/cycle, the following results are obtained. For the cases where

POL = 144o lb and 1870 lb, Cf = .28 and .38 respectively. The value of .28
is low for this material, but the value of .38 agrees closely with the value
obtained in Subsection 2.4. The difference (.28 - .38) is explained by the
amount of crack growth relative to the plastic zone radius. For POL = 1440 lb,

the average growth between overloads is 29% (N = 500) and 57% (N = 1000) of
the plane strain plastic zone produced by the overloads. As described in
Subsection 3.2.1, the growth between overloads must be small relative to the
affected crack length for the values of Cf obtained in this manner to be
valid. For POL equal to 1870 lb, the growth between overloads is less than
20% of the plane strain plastic zone radius. In this case, the calculated
value of Cf is expected to be more accurate.

3.2.3 Interactions of Single Overloads

The effect of single overload interactions, where additional over-
loads are applied before the effect of a previous overload has died out, has
been investigated in two different ways. First, a number of the periodic
overload tests were single periodic overload tests in which a specific over-
load was repeatedly applied after a particular number of lower loads had been
applied. These tests are discussed in other sections of this report. One of
the important conclusions reached from these tests was that, if the number of
low loads between overloads is sufficiently small, the closure load is the
same as if a large number of overloads had been applied and the closure load
is stable.

The second approach was to utilize tests in which another overload
was applied while the crack tip was still in the vicinity of the original
overload. Figures 56a and 56b are crack length vs. cycle plots for one of
these tests. Figure 56a shows an event in which a single overload was
applied. Figure 56b shows five additional events. In three of the events
shown in Figure 56b, a second overload was applied after the crack grew 0.006
inch from its length at the time of the first overload application. The re-
maining two events had the second overload applied after 0.010 inch of growth.

In viewing Figure 56, it is difficult to draw any quantitative con-
clusions about the effect of the second overload. It is originally expected
that closure load measurements of these tests would prove informative but,
as discussed in other sections, closure load measurements after single over-
loads cannot be made effectively. Figures 57a, b and c present crack growth
rate data for the events shown in Figure 56b in which the overloads were
separated by 0.006 inch. In two of these figures (57b and c) the second over-
load seems to have perturbed the crack growth rate pattern. However, for the
reasons discussed in Subsection 3.2.1 concerning data scatter, quantitative
use of this information is difficult. A similar test which shows the same
trends is shown in Figure 58.
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Figure 59 shows a test result for a test in which a slightly different
approach was tried. First, a single overload was applied and crack length vs.
cycle data was collected (circles). The baseline loading had a stress ratio
of 0.7 and the overload factor was 1.25. This was followed by a load sequence
in which an overload was applied every 2000 cycles (squares). Two thousand
cycles were chosen since it appeared that after 2000 cycles, the crack would
penetrate well into the plastic zone produced by the overload. Finally, just
the low loads were applied and the crack growth rate was allowed to return
to its constant amplitude value (triangles). Once again quantative conclu-
sions are difficult to reach, but it appears that no retardation occurs for
the single overload, while the repeated overload causes significant retarda-
tion (a crack growth rate reduction of 40%).

Titanium data were not included in this section since the affected crack
length is too small to be observed and plotted. It appears that inter-
action effects must be evaluated by an inverse approach. That is, the data
generated should be used to check a hypothesized model, rather than be
quantitatively evaluated.

3.3 MULTIPLE OVERLOAD TEST RESULTS

3.3.1 2219-T851 Aluminum

The effects of multiple overloads on subsequent crack growth were
examined. The test matrix was developed in order to examine three possible
situations for both materials investigated. The first was to determine the
effect on subsequent crack growth rates of the application of many overloads.
Here, many means that enough overloads are applied so that stabilized crack
growth conditions exist during the overload applications. The second was to
determine the effect on subsequent crack growth of the application of a few
overload cycles. Finally, tests which were essentially two-level block load-
ing were performed.

For the three situations investigated, up to three different overload
ratios were used for each of the two materials. In most cases, the stress
ratios for the two stress (load) levels were maintained at or near zero. In
some of the sequences, the minimum stresses (loads) were not necessarily close
to zero and/or equal for both stress levels. Table 5 presents the test matrix
for all multiple overload tests performed on both materials.

In this section, crack closure behavior has been utilized to explain
certain observed behavior.

Stabilized Overloads - A number of tests consisting of many overload
cycles followed by many low level loads were run. The number of loads at each
level was large enough so that stability was reached within that portion of
the load sequence. That is, each of the steps in the two step load sequence
contained sufficient cycles so that the crack growth rates reflected constant
amplitude loading conditions.
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The primary purpose of these tests was to investigate the transient
conditions during the low load sequence as the crack growth rate varied from
fully retarded to unretarded (constant amplitude). This transient behavior
was far less difficult to observe than was the transient behavior in a single
overload test. Typical test results for the 2219-T851 aluminum are shown in
Figure 60. Once the load has dropped, the variation in rate is monotonic.
This is not always the behavior with single overload tests. (See Subsection

3.2.) The highly transient behavior described in Subsection 3.2 does not
occur because the large number of overloads has caused a stable closure value
to be produced. Thus the monotonic variation in rate is simply a manifesta- -

tion of the monotonic variation in closure level, from a value associated with
the high load to a value associated with the low load. This can clearly be
seen in Figure 61, which represents the results of a test in which the base-
line loading was at a stress ratio, R, of .5. In Figure 61a, the entire a vs.
N plot is shown. Figures 61b and c focus attention on a single event in that
test. Figure 61b presents the crack length record for that event and Figure
61c presents the applied loads and closure load measurements for that event.
The upper and lower bumps called out in Figure 61c are described in the sec-
tion on closure measurements. We associate closure with the upper bump only.
Thus Figure 61c shows that the closure load rises during the initial portion
of the overload sequence, stabilizes, and then drops monotonically during
the low-load sequence to a stable level associated with that low-loading
condition.

Note that, for the closure load to return to a low value, the number
of cycles and the change in crack length since the overload is significantly
larger than any comparable measurement on the a vs. N plot (Fig. 61b). The
number of cycles to return to the lower closure value is approximately 25,000
(362,000 - 333,000) and the corresponding change in crack length is .085 inches
(1.29 - 1.205). However, from the a vs. N plot, there is a sharp change in
rate to an apparently unretarded condition at a crack length change of about
.007 inches and a cycle count of about 15,000. Although the data taken after
the overload in this test is a little too sparse to construct detailed crack
growth rate plots in the vicinity of the overload, other tests indicate that
a plot of da/dN versus Aa since the overload would yield an estimate for the
duration of the effect of the overload of .003 to .020 inch for this case.
An example of this is given in Figure 62a and b in which the estimates of this
critical length would be .004 and .012 respectively. Thus we see that the
determination of the duration of the overload effect (Aa*) is dependent on the
method used to determine it.

Note that the manner in which the closure load returns to its constant
amplitude value in Figure 6 1c is quite complex. Therefore any model that
represents this closure variation in a simple fashion (such as a linear or para-
bolic variation with Aa) will only be an approximation of the behavior shown
in Figure 61c. Thus for a model to be meaningful as a predictive tool, it

will be necessary to choose Aa* in a manner compatible with the assumed
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variation of the closure load, and in such a way as to yield a match in data
and predictions. The proper method, as far as a predictive model is concerned,
is to use a value of Aa* which, in conjunction with the variation in closure
load assumed, yields the correct average rates in the transient region and
thus a good life prediction.

The parameter Aa* is not simply a single value but varies with the
parameters of the test. Many previous investigators have assumed that Aa* is
proportional (or equal) to the plastic zone radius as determined from the

Z i Kmax0L• 2 •

maximum value of the overload. That is, it is assumed that As*~ 2 (y )

However, arguments based on the fact that residual compressive stresses play an
important role in crack growth interactions would indicate that an appropriate
range of stress intensity might be the correct variable.

In order to ascertain the correct variable, data for measured Aa*
values was gathered and compared to plastic zone radius calculations using a
variety of stress intensity variables. These variables are shown schematically
in Figure 63. In that figure the solid lines represent stress intensities
caused by applied loads and the dotted lines represent stress intensities
calculated using the closure loads. In Figure 63a, the three possible per-
tinent variables for a two-level test with the same minimum stress intensity
in each are indicated.

In Figure 63b, two additional possible controlling variables are indi-
cated for those tests in which the minimum stress intensity is different for
each loading sequence. One of the additional variables (KmaxOL - Kmin)

arises simply because of the presence of the second minimum load. The other
additional variable indicated in Figure 63b occurs because the closure load,.
and therefore Kc, variation might follow the pattern established by the dotted
line marked II. For that possibility, the final effective range in stress
intensity for the overload is determined by Kmin/KmaxoL rather than KminOL/

KmaxOL. That is, the reduction to a lower minimum load is effective immedi-

ately. There is evidence of this behavior in other phases of the program (see
Section 4).

The five possible combinations of pertinent variables and the result-
ing plastic zone equations are given in Table 6. Table 7 presents a compila-
tion of data and analysis from eleven different events. Overload ratios
were 1.5 and 1.8, stress ratios for the low loads were .05 and .5, and
constant-minimum and different-minimum loads for the overloads and base loads
were used. Measured values of Aa* were determined from Aa versus N plots such

_1/K 2
as Figure 62a. A plastic zone radius size, p :-- , was calculated with

each of the trial variable stress intensities substituted for K. The para-
meter .25p is listed in three of the cases, simply to maintain all the scales
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used for plotting at about the same value. Plotting the measured Aa* versus
a plastic zone calculation containing the correct variable should produce a
straight line dependence of Aa* with py.

The data from Table 7 are plotted in Figures 64 through 68. In Fig-
ures 65 and 66, two distinct trends are present, indicating that AKOL and
(KmaxOL - Kc 1 ) are not appropriate stress intensity variables for determining

Aa*. An examination of the basic data used for these two figures indicates
that the steeper sloping line segment is associated with tests with different,
minimum loadings for the two load sequences. In addition, we note in Figure 66 =

that there appears to be a tendency toward two distinct lines, and that the
steeper line is associated with high stress ratio tests. The remaining two
plots (Figures 64 and 68) both indicate an approximately linear variation
between the calculated and measured values. However, it appears that the EM
plot using (KmaxOL - Kcll) (Figure 68) has the least scatter. The reason for

the difficulty in clearly discerning which of these two variables,
(KmaxoL - Kc 1I) or KmaxoL, is more important is that the range of (KmaxOL -

KclI) was only .4 to .6 times Kmax for all the tests considered. In Subsection

4.1, it will be shown that the use of KmaXOL in calculating the affected

crack length (plastic zone) is straightforward and provides a good fit to the
data for the mathematical model developed under this program.

3.3.2 Ti 6A1-4V Titanium

As in most of the tests run in this program, it was more difficult to
analyze the multiple overload titanium test results than it was to analyze
the aluminum test results. This is due to the apparent increase in data
scatter in titanium, the significantly smaller plastic zone sizes in titanium
as compared to the aluminum, and the increased difficulties with the closure
measurements as described in Subsection 2.4. It was therefore necessary to
rely heavily on information from the aluminum tests during the development of
the predictive model.

This is a reasonable approach and is supported by data typified in
Figure 69. Figure 69a is a crack length vs. cycle plot for a two-level test
with a baseline stress ratio equal to 0.5, an overload factor of 1.5 and
equal minimum stresses in both segments of the load sequence. Two distinct
events are shown. Figure 69b presents the applied loads and the measured
closure loads for this test. Note that, after the overloads were applied,
closure load monotonically decreases from a high value associated with the
overload to a lower value associated with the baseline loading. This type of
response is identical to that which was observed for similar tests in alumi-
num. (See Fig. 61c.) However, the details of the manner in which the
closure level returns to the lower level are quite different for the two events
shown. This implies that attempts to model the closure variation using actual
closure data would be quite difficult.
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Although significant crack growth retardation is apparent in both the
crack length vs. cycle plot and, indirectly, in the closure measurements, the
distance over which the retardation is effective is quite small. This will
be even more apparent in subsequent figures. Note that the closure loads
measured before the overloads appear to be higher than the steady state re-
sponse after the overloads. It is felt that this is simply a manifestation
of problems in measuring closure and not indicative of any real material
response.

Some of the problems encountered with closure measurements in the
titanium can be seen in Figure 70. Figure 70a shows the crack length vs.
cycles plot for a two-level titanium test, Figure 70b is a similar plot of a
single event in that test, and Figure 70c shows the applied loads and mea-
sured closure loads for that test. Retardation is seen in the crack length vs. EM
cycles plots. However, there is too much scatter in the closure measurements
to arrive at any quantitative interpretations. Note that, even prior to the
overload, there is considerable scatter in the closure load measurement. In
terms of the maximum load, this scatter is not excessive (%15%) but, in terms
of the closure load itself, the scatter of approximately 30% causes an enor-
mous problem of interpretation.

Figure 71 presents detailed plots of crack length vs. cycles for a
single test specimen. The baseline loading had a stress ratio of .05, the
overload factor was 1. 5 and different numbers of overloads were applied for
each of the eight events. The figures show the growth after each set of over-
loads. The large number of events in a single test is possible because of the
small interaction diktance after an overload for the titanium material. Sig-
nificant increases in the amount of retardation still occurred as the number of
overload cycles was increased past fifty. Note, however, that we cannot really
see a retarded growth, but that what we see in these plots is a "delay."

This is almost certainly a result of the measuring scale not being sufficiently
fine. For example, had the scale for the aluminum data been sufficiently
gross, all we would have seen would have been a "delay" as well. Thus it is
impossible to measure Aa* as was done for the aluminum data. As a result,
conclusions reached regarding appropriate stress intensity variables to con-
trol Aa* on the basis of aluminum data have to be assumed to be valid for
titanium as well.

Figures 72a through 72h show sequences similar to those of Figure 71.
However, these data are for a test in which the baseline loading had a stress
ratio of 0.3 and the number of overloads applied decreased as the crack grew
longer, rather than increased as was the case in the previously discussed test.
Here again, it can be seen that there is more retardation with 50 overload
cycles than with 20 but, in addition, a value of Aa* could be discerned with
the larger number of overloads. That is, there does seem to be an identifi-
able location where there is a significant change in crack growth rate.
That this point is discernible in this test may be attributed to the fact that
the maximum overloads are approximately 40% higher than in the previous test.
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As an additional point, the fact that a value of Aa* is discernible in the

tests with a large number of overloads opens the question of whether increas-

ing the number of overload cycles affects the degree of retardation or the

duration of retardation.

Since the overloads are approximately 40% greater in magnitude for the

data of Figure 72 than for Figure 71, the overload plastic zone would be

approximately doubled. Therefore, larger values of Aa* are to be expected.

However, a casual inspection of the data reveals even larger values of Aa*

than those which were expected. The implication is that Aa* increases as the

number of overloads increases. In this case, the duration of retardation

would be a function of the number of overload cycles. The material cyclic
strain hardening or softening characteristics might also contribute to this

effect. It seems more likely, however, that the degree of retardation might

be altered by additional overloads. It will be shown in Section 4 that when

Aa* is assumed to be the plastic zone created by the overload(s), regardless

of the number of overloads, it yields a generally good definition of the

interacted crack length. Based on this assumption it follows that the number

of overloads controls the degree, but not the duration, of retardation.

Because of the difficulties associated with the analysis of the tita-

nium test results, the modeling approaches used for aluminum were applied to

the titanium test results. The model was verified by comparing the gross be-

havior of the titanium test results to the results predicted by the model.

This procedure is discussed in Section 4. Generally, this approach produced

satisfactory correlation.

3.4 VARIABLE AMPLITUDE TESTS

Variable amplitude tests were performed on specimens fabricated from

both materials. These tests utilized block program loadings with variations.

The blocks were composed of three or four layers, and were arranged in high-

low, low-high and randomized sequences, with all of the minimum loads equal

to or nearly zero. Each loading block was identical to the others in a given

test. Variations on the basic loadings included maintaining all of the mini-

mum loads at some elevated (greater than zero) value with occasional excur-

sions to zero load.

One center cracked panel specimen of each material was subjected to a

fighter spectrum as defined in Table 5 of Reference 7. The limit stresses of

30.9 ksi for 2219-T851 aluminum and 61.9 ksi for Ti 6Al-4V titanium shown there

were also employed in this program.

These tests were performed as an aid in the verification of the math-

ematical model developed during this program. As a result, very little
analysis of the data was performed.

Table 8 presents the test matrix while Table 9 presents the spectra

employed for these tests.
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3.5 EFFECTS OF UNDERLOAD AND COMPRESSION SPIKES

A few specimens were tested to obtain some understanding of the effect
of underioad or compression spikes. An underload is defined as a reduction in
the minimum load (or stress) such that its minimum value is greater than, or
equal to, zero (tensile). The test program included compression (underload)

spikes only, tensile overloads followed by compression (underload) spikes and,
to a limited extent, tensile overloads preceded by a compression (underload)
spike. Table 10 presents the loading conditions employed.

Underloads - The test plan originally included some compact tension
specimen tests to investigate the effect of compressive loads on crack growth
behavior. However, preliminary tests and some reflection indicated that the
results might be difficult to interpret. It can be seen that, for any speci-
men configuration, once the crack surfaces are in contact, a cracked specimen
behaves like an uncracked specimen and the important load parameter is the
stress, not the stress intensity factor. The load at which the entire crack
is closed will be a complex function of specimen geometry and crack length.
No method currently exists to determine the load at which the entire crack
closes. In the case of the compact tension specimen, there is a tendency for
the crack tip to open when compression loads are applied. This is especially
true for long cracks (large values of a/W). In this case, proper characteri-
zation of crack growth phenomena in terms of either stress or stress intensity
is currently beyond the state-of-the-art.

As a result, an alternate test procedure was adopted. The new tests
were performed using a baseline loading with a stress ratio greater than zero
so that the minimum applied load was significantly greater than zero. Then,
occassional or multiple excursions to approximately zero load (referred to as
underloads) were applied. It was felt that, in tests of this nature, the
underload(s) would have the same general effect on subsequent crack growth
during the baseline loading as a compression load(s) might have if the speci-
men had been a center-cracked panel. For example, an underload with R = .05
should have the same qualitative effect on tests with a baseline R = .5 as
compressive loads have on tests run with a baseline R = .05. Since the major
portion of the crack surfaces are not in contact during these tests, inter-
pretation of the test data in terms of stress intensities is considered to be
rational.

Six specimens, three each of titanium and aluminum, were tested in this

manner. All six specimens had a baseline loading with R = .5. Two each of
the aluminum and titanium specimens had additional single cycles of loading
with an underload of zero and an overload ratio of 1.5 superimposed on the
baseline loading. However, the order of loading (underload-overload or
overload-underload) was modified for different specimens. The aluminum test
results are shown in Figures 73 and 74. As noted earlier, a single overload
cycle with an overload ratio of 1.5 does not cause very much retardation in

2219-T851 aluminum. One could argue that there was retardation in the test
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in which the underload preceded the overload and that there was no retardation
when the underload followed the overload, but the differences are not signi-
ficant. The titanium test results shown in Figures 75 and 76 are slightly
more conclusive. This is due to the fact that single overloads with overload
ratios at 1.5 do cause some retardation in titanium. There appears to be
some retardation in the test in which the underload follows the overload, but
it is certainly quite small. However, the test for which the underload
precedes the overload shows significant retardation.

The remaining specimens in this series were used to investigate the
effect on subsequent crack growth of a large number of overloads followed by
a single underload cycle. The test results for the titanium specimen are

shown in Figure 77 and those for the aluminum specimen are shown in Figure 78.
In both these figures, little if any retardation is evident.

In addition to these tests, a single underload cycle was applied
during the constant amplitude loading of one of the specimens (AD-25-117). It
was felt that the drop in load could have decreased the closure level and

thereby caused a short period of crack acceleration. As can be seen in Fig-
ure 79, no significant acceleration occurred.

Although, only a limited number of underload tests were run, these
tests indicate that:

"* A single underload can change the closure load sufficiently to
remove the effects of previous overloads.

"* Although a single underload may reduce the closure load, subsequent
constant amplitude cycling causes the closure load to recover
rapidly enough to eliminate any significant acceleration.

If these observations are extended to compression, we may conclude
that compression excursions reduce or eliminate retardation, but do not cause
significant acceleration.

Compression Spikes - Center-cracked panel specimens, suitably stabi-
lized against column buckling, were subjected to compression, tension-
compression and compression-tension loading sequences. Results from 2219-T851
aluminum tests indicate that the application of a single isolated compression
spike has virtually no effect on subsequent crack growth behavior. This con-
clusion is substantiated by the test results shown in Figures 80a through 80c
and 81. There, crack length is plotted against ANs (the number of cycles since
the compression spike) for compression spikes ranging from one half to two
times the maximum baseline tension loading. In addition, the crack length vs.
ANs curve, calculated using constant amplitude growth rates and neglecting any
effect of the compression spike, is plotted for each case. In Figures 80a
through 80c, there is a tendency for the calculated lives to be slightly

longer than the actual lives. In Figure 81 however, the opposite result can
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be observed. Based on the results of these tests, it was concluded that the
compression spikes had negligible effect on subsequent crack growth in the
aluminum.

Figure 82 presents similar results for a titanium panel subjected to
occassional compression spikes. These results seem to indicate that the
compression spikes produce subsequent crack growth rates which are greater
than constant amplitude rates. In some cases there is an initial perturbation
of the data immediately following the application of the compression spike and
the rates are higher than the constant amplitude calculations. The two cases
shown on the left side of Figure 82 show this most prominently. However, after
a crack extension of about 0.05 inch (for these two cases), the crack growth
behavior appears to stabilize. The rates in these apparently-stabilized
regions are still measurably greater than the calculated values. This ten-
dency indicates that some scatter may be present in the constant amplitude
crack growth behavior for this specimen. The data shown in the right side of
Figure 82 lie somewhat closer to the calculated curves, but still exhibit
shorter lives than the constant amplitude calculations. Based on the results
from these two figures, the compression spikes seem to produce somewhat faster
subsequent crack growth rates in the titanium material, but the data are in-
sufficient to reach any quantitative conclusions.

Tension-Compression Spike Sequences - Figures 83a through 83c present
a vs. ANs data for aluminum specimens subjected to tension spikes followed
immediately by compression spikes. A calculated constant amplitude crack
growth curve which neglects any effects of the tension or compression spikes
is also shown for each case. The first two cases (Fig. 83a) resulted from the
application of tension-compression spike sequences where the magnitude of both
spikes was 1.5 times the baseline loading. It can be seen that the actual
crack growth rates are much lower than the calculated rates. These results
imply that the tensile spike causes a retarding effect on subsequent crack
growth rates and that the compression spike does not appear to offset the
effects of the tensile spike. It was concluded in Subsection 3.2.1, however,
that a single overload, where the overload ratio was 1.5, produced very little
retarding effect on subsequent crack growth rates for the 2219-T851 aluminum
material. The decreased rates shown in Figure 83a are therefore attributed
to scatter and these results are inconclusive. The results shown in Figure
83b and 83c are only slightly more conclusive. There, the tensile overload
ratios were 1.5 and 2.1 and the compression spikes ranged from 0.5 to 3 times
the baseline tensile loading. For the cases where the tensile overload is
9 ksi (overload ratio = 1.5), the data lie close to the calculated constant
amplitude curves.

If the compression spikes had not been included, the tensile overload
would be expected to cause very little effect on, subsequent crack growth
behavior. The compression spikes by themselves have been shown to produce
essentially no effect on the subsequent rates for this material. Therefore,
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it can be concluded that the combination of tensile overloads followed by
compression spikes have, for the overload ratio of 1.5, very little effect on
subsequent crack growth behavior.

For the three cases where the tensile overloads are 12.6 ksi (overload
ratio = 2.1), there is a consistent trend such that the actual lives are
always greater than the calculated constant-amplitude lives. These results
indicate that the tensile overloads have caused some subsequent retardation.
The number of delay cycles are approximately 9,000, 7,000 and 11,000 for the
cases where the compression spikes are 3, 12 and 18 ksi respectively. Insuf-
ficient data were gathered for single overload spikes alone (where the over-
load ratio was 2.1) to quantify the number of delay cycles. It is therefore
impossible to say how much the subsequent compression spikes influenced these
results.

It is interesting to note that the number of delay cycles are approxi-
mately the same for all three cases and that the stress intensity for the
longest crack length, when the spikes are applied (1.205 inches), was only
17% greater than that for the shortest crack length (0.88 inch). It can be
expected that if no subsequent compression spikes had been applied, the num-
ber of delay cycles would be approximately the same since K is nominally
constant. The introduction of the compression spikes did not cause any sig-
nificant variation in the number of delay cycles. It can therefore be con-
cluded that the subsequent compression spikes either: 1) do not alter the
effects on subsequent crack growth rates of the tensile overload, or 2) any
modification of the tensile overload effects is ifidependent of the magnitude
of the compression spikes, at least for the ranges considered here. It will
be shown in Subsection 4.1.3 that, for these three cases for this specimen
(AG-15-10P), the conclusion that the compression spikes have negligible
effect is correct.

The data for a similar test, performed on a titanium specimen, are
presented in Figure 84. In addition to tension-compression sequences, some
compression-tension sequences were also applied to the specimen. The tensile
overloads were always 1.5 times the maximum baseline loading and the compres-
sion spikes were either 0.5 or 1.5 times the maximum baseline loading, For
the Ti6Al-4V material, single overload spikes having an overload ratio of
1.5 do cause some subsequent crack growth retardation. For three of the four
cases, where the compression spike precedes the tensile spike, some initial
retardation is present. (The first data point after ANs = 0 shows a crack
length which is equal to or only slightly larger than the value at ANs = 0.)
However, the subsequent stabilized crack growth rates are always greater than
the calculated constant amplitude rates, so quantification of the number of
delay cycles is impossible. In three of the four cases where the compression
spike was applied after the tensile spike, the first data point after ANs = 0
shows that the crack length is greater than the value at ANs = 0. These
results indicate that, for the titanium, the application of the compression
spikes tends to negate the retarding effects of the tensile overloads. Again,
no quantitative conclusions are possible.
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It can be concluded that, generally, the application of compression
spikes, either alone or following a tensile overload, have very little in-
fluence on the subsequent crack growth behavior in 2219-T851 aluminum. For
the Ti6Al-4V titanium material, compression spikes seem to accelerate sub-
sequent crack growth. When compression spikes are applied prior to a tensile
overload, the results were inconclusive, but where they were applied subsequent
to a tensile overload, they tend to negate the effect of the overload on sub-
sequent crack growth rates.

3.6 MISCELLANEOUS TEST RESULTS -

3.6.1 Stable Tear

Some of the aluminum specimens tested at high K levels exhibited slow
stable tear. This is the phenomenom which occurs when the stress intensity
under monotonically increasing tensile loading approaches the, critical stress
intensity of the material, thereby causing a significant amount of crack
extension. In order to quantify this stable tear, a crack growth resistance
test was performed on a 2219-T851 aluminum compact tension specimen. This
test was performed by measuring the crack opening displacement (COD) under
monotonically increasing load until the load vs. COD trace became nonlinear.
The specimen was then unloaded sufficiently to produce a new, linear, load vs.
COD trace. The load was again increased monotonically until some further non-
linearity occurred and the process was repeated. Figure 85 shows the procedure
schematically. Each of the linear unloading traces was used to determine the
crack length and maximum stress intensity at each point where the linear un-
loading lines intercepted the overall load-displacement curve. In this
manner, plasticity effects were excluded and crack extension was the only
significant variable. Since the material thickness was nominally the same
for most aluminum specimens, it is not considered to be a variable here.

It should be noted that the initial crack length prior to running
the test was measured on the surface of the specimen and was assumed to be
straight and normal to the surface. Subsequent calculations, based on COD
measurements by necessity, used the same assumptions. In reality, some
curvature of the crack front was present, although no effort was made to in-
clude this curvature in the stress intensity calculations. The results are
plotted in Figure 86 as Kmax vs. incremental crack extension, Aa, measured
from the initial crack length. The total crack length was calculated from
the COD measurements. The results were extrapolated to an intercept value of
approximately 30 ksi YTn for Aa equal to zero. This value of K is defined as
the threshold for stable tear, Kst. Since failure occurs at the point where
the applied stress intensity curve is tangent to the resistance curve (see
Reference 8,) the upper bound or maximum value of the apparent critical stress
intensity, Ker, is 57.5 ksi VT-
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The results of this test indicate that whenever the stress intensity
exceeds 30 ksi Vrin (Kst) for this aluminum, some stable tear could be expected

to occur. In some cases of single overload applications, the peak stress
intensity during the overload exceeded Kst.

Specimen AG-25-6P, a center cracked panel, was subjected to several

single overload applications of 21 ksi with a baseline stress range of 10.0
to 0.5 ksi. In all cases, the stress intensity during the overload exceeded

Kst. A visual examination of the fracture surface revealed that, during the
overload, the crack growth along the center line of the specimen exceeded the
growth on the surface of the specimen. The internal growth is referred to as
tunneling and is shown schematically in Figure 87. For the cases of long

cracks (KmaxOL approaching Kcr), this difference was relatively large. The

tunneling, defined as at, was measured for five events, using an optical com-

parator. The values obtained from both crack tips were averaged and are
presented in Table 11. Values of at, taken from the resistance curve (Figure

86) for each value of KmaxOL, are also presented and agree closely with the

measured values.

Figure 88 shows a vs. N after one overload application on specimen

AG-25-6P. The data points representing surface measurements are almost flat
from the point of application of the overload up to about 329,000 cycles,
indicating that there is almost no surface growth during this period. At
about 329,000 cycles, a sudden jump in the surface length occurs which is
followed by a monotonically increasing a vs. N curve.

The stress intensity during the overload was 36.3 ksi Vi-n-. at a half
crack surface length of 0.852 inch. From the crack growth resistance curve
(Fig. 86) the expected stable tear is 0.008 inch. It was assumed that the

crack front increased by this amount at the centerline of the specimen thick-
ness during the application of the overload, to a half crack length of 0.860
inch. The dashed curve in Figure 88 indicates the assumed behavior of the

crack tip at the centerline of the specimen thickness. At 329,000 cycles,
after the jump in length, the surface length agrees closely with the assumed

centerline crack length.

Figure 89 presents the normalized crack growth factor vs. crack growth

increment subsequent to the overload, for the data of Figure 88. The nor-
malized crack growth factor, fn, is the measured crack growth rate divided by

the calculated constant amplitude crack growth rate. When interpreted
literally, the data exhibits an unusual sinusoidal behavior. The dashed line,
however, indicates schematically how the crack growth at the centerline of

the crack tip might vary. The crack growth and rate data were of no value for
analysis purposes until after the surface lengths agreed with the internal
lengths. Prior to this point, the apparent surface crack growth rate was

zero.
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These large crack extensions were generally accompanied by extensive
plasticity near the crack tip. The extent of plasticity was observed to be
considerably greater than values obtained from the Irwin plastic zone expres-.
sion (Reference 9). It was apparent upon reviewing data such as this that it
would be very difficult to define the actual, nominal crack tip growth
behavior.

A crack growth resistance test was also performed on a Ti6Al-4V
specimen. The results, shown in Figure 90, indicate that Kst is approximately
72 ksi iiw: (extrapolated) and that the upper bound or maximum value of Kcr is
about 81 ksi VinT. Only a few events involved stress intensities in excess of
72 ksi V§i-n., so stable tear was not a problem for the titanium.

3.6.2 Thickness Effects

Although a detailed evaluation of the effects of thickness variation
on fatigue crack growth retardation is beyond the scope of the present study,
a few tests of .75 inch thick Ti 6A1-4V titanium were run for comparison with
the .25 inch thick material used in the bulk of the program.

The results of the first test on .75 inch (instead of .25 inch)
material are shown in Figure 91, along with test results from a .25 inch
specimen. Both specimens were sized identically (except for thickness) and
the applied loads were scaled by the thickness. In each test a periodic
series of 100 overloads followed by 1000 low loads was applied. Care was
taken to start the loading sequence at about the same location in each
specimen.

As can be seen, the two test results match quite well. The lower
rate at the longer crack lengths in the thin specimens can be explained in
terms of decreased environmental susceptibility in plane stress. This same
trend has been observed in constant amplitude test results of other investi-
gators. In fact, this test is very similar to constant amplitude testing in
many ways. It is essentially a steady-state test in which the closure
load remains constant throughout the test. This constant-closure phenomenom
was demonstrated for this type of periodic loading early in the program.
Thus, the fact that the thickness does not significantly affect the retarded
crack growth is not surprising in light of the general lack of a thickness
effect for constant amplitude loadings. From this test result one might
hastily (and apparently incorrectly) conclude that the thickness does not
affect the closure loads. Actually, aproper conclusion is only that the
stable or quasi-stable closure levels do not depend on thickness. Obviously,
in constant amplitude loading, the closure level reached and maintained cor-
responds to the stable level reached after a large number (>100) of loads are
applied. Since the crack tip does not grow significantly (% plastic zone
radius) between overloads in the test shown in Figure 91, the (quasi-stable)
closure level reached also corresponds to the level reached after a large
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number of loads are applied. The results shown here simply support the
results of constant amplitude loading which indicate that the closure level
is not a function of thickness. The effect of isolated overloads, however,
does appear to vary significantly with thickness.

This can be seen in Figure 92, where two corresponding tests of .25
and .75 inch thick material are compared. The test specimens were not identi-
cal. However, each individual loading sequence was initiated at nominally
matching stress intensity factors. This was accomplished by choosing appro-
priate crack lengths for each loading sequence in the .75 inch specimen.
The surprising observation of the comparison in Figure 92 is that there is
more (or at least longer periods of) retardation in the thick specimens than
in the thin. This result is exactly the opposite of what was anticipated.

To confirm the results of the previous test and to remove the con-
founding effects of varying the number of overloads, the test of specimen
TD-25-106, in which single 1.8 overloads were applied, was reproduced
on a thick specimen. Once again the test specimens were different but the
stress intensities at each overload were matched. As can be seen in Figures
93 through 96, the conclusion is the same; the thick specimen shows more
pronounced retardation than does the thin specimen.

In each of these figures, a vs. N for a particular overload in the
.75 inch material has been plotted along with the data from the test of
TD-25-106. It is important to note that although the retardation in the thick
and thin specimens is different, the rates in each thickness match once a
constant amplitude rate is attained. This can be seen by the matching of the
slopes of a vs. N. It confirms our previous conclusions and the fact that the
test is being run properly.

Since constant amplitude testing and Figure 91 imply that the satura-
tion closure levels are invariant with thickness, and since Figure 92 contains
load sequences that have as many as 2000 overloads and still show a variation
in retardation (or at least a variation in the return to baseline) with thick-
ness, one must conclude that the closure stress variation as the crack grows
must be different in the thick and thin sheets. It is not yet clear whether
the resumption of the constant amplitude (saturation) closure level occurs
at the same Aa* or at a different Aa*. However, it is important to note
that, at least for those cases where the number of overloads is large, the
initial closure load must be the same. Obviously, the other end point, the
constant amplitude closure level, must also be the same.

3.6.3 Tensile Tests

Tensile tests to obtain material mechanical properties were conducted
using the equipment described in Section 2. The results are self-explanatory
and are presented in Table 12.
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3.7 SUMMARY OF TEST RESULTS

Under constant amplitude conditions, crack growth rates are functions
of both stress intensity range and stress ratio for both materials. The
stress ratio cutoff was 0.5 for 2219-T851 aluminum while no cutoff was observed
for R up to 0.7 for Ti6Al-4V titanium. No effect of stress or load level on
crack growth rates was observed for either material over the ranges tested.
At the same values of stress intensity range and stress ratio, the aluminum
crack growth rates were approximately three times those for the titanium. All
three basic specimen geometries yielded comparable crack growth rates although =

the compact tension specimen yielded erroneous results for negative stress
ratios.

Single overload cycles less than, or equal to, 1.5 times the baseline
loading have negligible effect on subsequent crack growth rates for 2219-T851
aluminum. The same is true for overloads equal to 1.25 times the baseline
loading in Ti 6AlI-4V titanium. At a given overload ratio and baseline stress
ratio, delay cycles increase as a function of crack length and therefore,
stress intensity for aluminum. For titanium, the opposite result was observed.
For the methods used to analyze the data subsequent to a single cycle overload,
the affected crack length was approximately equal to the plane strain plastic
zone for aluminum and to the plane stress plastic zone for titanium. Delayed
retardation was not evident in either material.

Single periodic overload tests can be employed to obtain an approxi-
mate value of the closure factor. These data can be used in conjunction with
constant amplitude data to obtain the extreme crack growth rate curve, which
is independent of stress ratio effects.

In tests where a single overload cycle was applied before the effect
of a previous overload had disappeared, the results were inconclusive. For
this type of test, the aluminum exhibited extensive scatter and the titanium
was impossible to analyze due to the extremely small affected crack lengths.

Where multiple overloads are applied, the degree of retardation of
subsequent crack growth increases as the number of consecutive overload cycles
increases, up to a limiting number of overload cycles. Beyond that limit, the
addition of overload cycles produces no additional retardation. The duration
of retardation subsequent to one or more overloads appears to be independent
of the number of overloads. The duration of retardation (affected crack
length) is a function of the plastic zone caused by either the maximum ampli-
tude of the overload or by the difference between the maximum amplitude of the
overload and the closure level. Closure data were easier to read for multiple
overload conditions than for single overload conditions, but still possessed
considerable scatter.
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Single underload or compression spikes, either applied alone or
preceding or following a single tensile overload cycle, had very little
influence on subsequent crack growth for 2219-T851 aluminum. However, a
single underload negated the retarding effects of multiple preceding tensile
overloads. In the Ti 6A1-4V titanium material, single underload or compres-
sion spikes caused slightly accelerated subsequent crack growth rates. The
effect of a single underload or compression spike which preceded a tensile
overload cycle had little effect on the retardation caused by the tensile
overload. When a single underload or compression spike followed one or more
tensile overloads, it significantly reduced the retarding effect on subsequent

crack growth of the overload(s).

Measurable stable tear began at a stress intensity level of about
30 ksi VTn for 2219-T851 aluminum and at about 72 ksi in. for Ti 6A1-4V
titanium. Stable tear tends to manifest itself as internal tunneling with,
in many instances, negligible surface growth. The limiting values of critical
stress intensity for the 1/4 inch materials are 57.5 ksi /177. for aluminum and
81 ksi VE7 for titanium.

Varying the material thickness does not appear to affect stabilized
crack growth behavior for either material, but may influence transient

behavior.
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4 - MATHEMATICAL MODELING

Several mathematical models have been developed in an attempt to
describe crack growth interaction effects. Perhaps the most widely known are
the Wheeler model (Ref. 10) and the Effective Stress Retardation model devel-
oped by Willenborg, et. al. (Ref. 11). Both of these models modify the crack
growth rates subsequent to overload(s) in order to account for retardation.
The Wheeler model modifies the crack growth rate such that the retarded crack
growth rate is equal to the unretarded crack growth rate times a parameter C

p

ret CAP

where

m (12)p (a) fora+p<a
Cp = ap - a f r a + p<a p

and C =1. for a + p ? a (13)p p

Here, p is the plastic zone radius caused by the current loading at the current
crack length a. The parameter ap represents the farthest extent of the elastic-

plastic interface caused by a previous overload. The empirical exponent m is
determined from spectrum test data by trial and error. It was intended that m
be a material constant and, once determined, be spectrum independent. However,
several investigators (i.e., References 5 and 7) and results of work on this
contract have shown that m is spectrum dependent.

The Effective Stress model accounts for interaction effects by modifying
the applied stress range to an effective stress range:

AS =Sme - S min (14)
eff maeff mmeff

where

Smaxff max Sred
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and

Si = S - S (14b)mn min red
e ff

where

red = Sap - Smax (14c)

The magnitude of S is that stress required to set the plastic zone caused byap

S ap (acting on the current crack length, a) equal to the elastic-plastic inter-

face, ap, caused by a previous high load. Both ASeff and Smineff are con-

strained to be L zero. In some loading sequences, this retardation model
predicts the crack growth under spectrum loading fairly well. However, Figure
97 shows a typical case where the prediction is very unconservative. An addi-
tional shortcoming of this model is that an overload will cause crack arrest
for the subsequent loading if the subsequent loading is equal to or less than
half the magnitude of the overload (O/L = 2). This has been demonstrated to
be incorrect (Ref. 5). A modification to the model, developed by Gallagher
(Ref. 12), makes the overload factor, O/L, a variable. This has been shown
to produce improved predictions.

The greatest shortcoming of both of these models (Wheeler and Effective
Stress) is that they do not differentiate between the effect on subsequent
crack growth of single and multiple overloads. As described in Section 3 of
this report and by others (References 5, 13 and 14), this effect can be
significant.

4.1 CRACK CLOSURE MODEL

Elber (Ref. 15) demonstrated the phenomenon of crack closure and
suggested that variations of the crack closure stress might be responsible for
or help to explain crack growth interaction effects. Based on this premise, a
mathematical model, using crack closure as a basis, has been developed. The
model uses the variations in crack closure to predict crack growth interaction
effects during spectral loading.

4.1.1 Crack Closure Concepts

Elber (Ref. 15) showed that cracks subjected to tension-tension loading
open and close when the remotely-applied stress is some value greater than zero.
This effect. is shown schematically in Figure 98. Assuming that crack growth
(extension) occurs during the increasing tensile portion of a cyclic loading
sequence as proposed by Elber, the pertinent stresses involved in the growth
process should be the crack opening and maximum stresses. It has been shown
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(References 15 and 16) that the crack opening stress differs from the crack
closure stress, but for the purposes of this discussion they will be consi-
dered to be equal and will be referred to as the closure stress.

Referring again to Figure 98, the effective stress range, AS eff is

equal to the difference between the maximum stress, S, and the closure

stress S
c

ASeff = max - c (15)

Defining the closure factor, CV as:

S (16)
Cf S

max

Equation (15) becomes:

ASeff = S ( -C f) (15a)
ff maxf

Elber proposed indirectly that Cf is a function of stress ratio, R,

through his equation:

S - S (17)
max opU=s SS -S .max min

where S is the crack opening stress, called S *here. Therefore,op c

I- Cf (17a)
1 R

which, according to Elber

.5 + .4R (17b)
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for 2024-T3 aluminum. Therefore:

Cf = 1 - (.5 + .4R) (1 - R) (17c)

Equation (17c) can be inserted into Equation (15a) to produce:

ASeff = Smax [(.5 + .4R) (1 - R)] (15b)

which can be generalized to:

ASeff S max [(l + qR) (1 - R)] (15c)

When Equation (15c) is inserted into a Paris-type crack growth equation, it is
referred to as the Elber growth equation (reference subsection 3.1):

d-da = C ISma (1 + qR) (1 - R) fa n(15d)

dNma

for the case of a through crack in an infinite sheet. This geometry has been
assumed for convenience, but it should be noted that S 7Ta times an appropriate
stress intensity magnification factor may be used in any of these equations
for other geometric configurations.

For the purposes of this model, a Paris-type growth equation was
employed:

da = AKn (18)
dN

= I [Smax(l - R)•] na (18a)

Elber also showed that

n

daN LC [(Smax - c)VTa (18b)
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For constant amplitude crack growth conditions, equations (18a) and (18b) must
be equivalent so that:

n n

C [Smax(l - R) ra] =1 C Sma(l- Cf Via (18c)
max f

or:

n
C1 = C-1R 1(18d)

Cf I

For the case of R = 0,

n

C, = C ] (18e)cf
0

where Cf is the closure factor at R zero. Equation (18b) then becomes:

00da r Smax c Sc n

The coefficient C and exponent n have the same values that would be
determined by using the Paris expression (Equation (18)) to fit crack growth
rate data plotted against the actual applied stress intensity range.

Equation (19) is the basis for all crack growth calculations performed
by the model. Elber showed that S was a function of S and R during steady-c max

state (constant amplitude) crack growth. If Sc in Equation (19) is defined as

a function of stress ratio, then Equation (19) will predict the effect of
stress ratio on crack growth rates. (It should be noted that the results of
this investigation indicate that the closure stress is a function of stress
ratio only and does not appear to be stress-level dependent. That is, the
closure stress is always some percent of the maximum load, depending on what R
is, and does not depend on the absolute magnitude of the maximum load.)
Further, if S is defined as a function of the previous load history, then

c
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Equation (19) will predict crack growth interaction effects. It remains then,
to define S as a function of stress ratio and previous load history, and anyc

other pertinent parameters, so that Equation (19) will properly predict crack
growth rates for any conditions. The determination of the generalized behavior
of S as a function of load history is the subject of the following section.

c

4.1.2 Application of Crack Closure to Mathematical Model

The discussion of the crack closure model centers around the results
for the 2219-T851 aluminum test data obtained during this program. This was
ione for convenience since the aluminum test data was more convenient to
analyze and revealed information not readily available from the titanium test
lata, particularly in the definition of affected lengths (plastic zones) and
the crack growth within the affected lengths.

After the model had been developed for the aluminum data, the neces-
sary parameters were determined for the titanium data, and the model was used
to verify that it properly predicted the crack growth behavior of the titanium
data. In general, the latter is true and is an indication that the model
employs the basic concepts necessary for general predictive work.

In the past, it has been suggested that many parameters influence crack
growth interactions. The most significant parameters were determined from the
test data as far as possible. In some areas, quantitative values were not
divulged by the data and a certain amount of intuition was employed. In all
cases, the model was verified by comparing predicted a vs N curves with the
test data. The most significant parameters found during this program were:

"* Effect of R on constant amplitude crack growth

"* Effect of maximum overload stress, SOL, on subsequent retarded
growth

"* Effect of previous minimum stress relative to current minimum stress
on subsequent growth

"* Effect of number of overload cycles, NOL on subsequent retarded
growth

"* Effect of compression on both constant amplitude and variable
amplitude growth.

Constant Amplitude Crack Growth - The crack growth rate equation for
2219-T851 aluminum was given as

lO~ [l AK]3.34~

da = 1.96 x 10-9 [(l + .6R) AK] for 0 < R : 0.5 (la)
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Equation (19) with C = 1.96 x 10-9 and n = 3.34 is

da 
[S 

(3.34

1. .96 x ls/ 1l - C f(9

0

As a convenience, taking K = S VTra and K = Scfmax max c c

da 3.34 
BE

= 1.96 x 10 L' (19a)

0

Equations (la) and (19a) are equivalent under the same conditions so that:

KKc -Cf = 1 -- (i - Cf ) (1 + .6R) (1 -R) (20)

max o

Equation (20) is plotted against stress ratio in Figure 99 for the case of
Cf = 0.23. This value of Cf was selected so that at R = R = 0.5 (fromf f co

0 0

subsection 3.1.1) in Equation (20), the effective stress range is equal to the
applied stress range. The difference between Cf = 1 and Equation (20),

multiplied by K is the effective stress intensity range AK eff. The dashedmaxef

line on the right represents R, so that the difference between Cf 1 and R

multiplied by K is the applied stress intensity range, AK. It can be seen
max

that Equation (20) crosses the R curve at a value of R = 0.5. The figure
indicates that for R < 0.5, the closure stress intensity, Kc3 is higher than

the minimum stress intensity, Kin and AK K - K . For R > 0.5, K
mi eff max c c

is less than Km. so that, physically, AK = AK (Kc = Kin) at R = 0.5 and
min eff c min

stress ratio layering stops at that value of R.

Figure 100 presents Equation (20) using Cf = 0.23, replotted with
0

measured crack closure values. It can be seen that the calculated values of
Cf lie along the lower edge of the scatterband of the data and indicate that

the calculated value of Cf (0.23) is too low.
0
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E2

Figure 100 also shows Equation (20) plotted with Cf = 0.40. It will
0

be shown later that this value provides a better fit to the variable amplitude
data from a predictive standpoint and here, in the figure, fits the measured
closure values quite well except for R >0.4. It is apparent that the form of
Equation (20) is incorrect. Further, Figure 100 shows that, for values of R
less than -1/3, Cf increases; an undesireable behavior.

Another form for Cf was developed, specifically to describe the crack

growth behavior for negative values of R while at the same time providing
reasonable correlation for positive stress ratios. For a stress ratio of -1,

da 2.6 x lo-9(Km) (R = -1) (2)
dIN max

and for R = 0, Equation (la) becomes

da 1.96 x io- 9 (K 3.34 (R o) (la)

dN max

so that

Ida\_
\dN)R -1 - 2.60.

da = 0 = = 1.327

Similarly, taking the ratio of the crack growth rates, but using the form of
Equation (19):

K K 3.34

SR =-i o R=-Jda max - c R =-1

o [K - K

B = 0 [KLmax K c ]3-30
o-2 R=0
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Since K was defined to be the same as AK at R = 0 and R -1
max

(da) - 1 - Cf 3.34

(daB 1-Cf 1.327

dN /R 0 0

Cf =i -1.088(1- c)

and

= 0.347 for Cf = 0.4
f

In a similar manner, the C at a positive stress ratio may be obtained. For
f.

R = 0.5, Cf. 0.789. *These values of Cf vs. R were fitted to an equation of.f.

the form:

Cf= Cf. 1 + (Cf - Cf.l) (1 + R)p (21)

where

C = 0.347
f-

1

Cf =0.40
0

p= 3.93

and plotted in Figure 101a. It can be seen that Equation (21).agrees closely
with Equation (19) in the region 0 < R < 0.5. Equation (21) was used to define
Cf as a function of R and the resulting closure stress intensities were used

53



in Equation (19a) to calculate crack growth rates. These rates are compared
in Table 13 with those of Equations la and 2, which were generated independent
from crack closure considerations.

The table shows that the crack growth rates calculated from Equations (19a)
and (21) are always less than 5% greater than those obtained from Equations
la, lb and 2 up to a stress ratio of 0.6. The maximum error of 5% is well
within the accuracy of the crack growth rate data. As a result, Equation (21)
was used to define crack closure as a function of R, so that the effects of
negative stress ratios and compression stresses are accounted for.

For Ti 6A1-4V titanium, the parameters for Equation (21) were
determined to be:

C f = 0.332

Cf =0.40
0

p =3.33

Equation 21 is shown in Figure 101b for the titanium material.

A comparison of crack growth rates as a function of R is shown in
Table 14 for Ti 6A1-4V titanium. It can be seen that, for R > 0, the crack
growth rates calculated from Equations (19a) and (27) are within 2% of the
values obtained from Equation 1c. For R = -1, the values from Equations
(19a) and (21) are about 25% less than the value from Equation 3. Since only
one titanium specimen was tested to obtain the R = -1 data, the parameters for
Equation (21) were selected to provide a good fit to the R > 0 data.

High-Low Loading Sequence - The high-low loading is the sequence most
frequently analyzed by investigators. Following is a description of how the
crack growth data during the low portion of a high-low loading sequence can be
used to determine the closure factor at R = 0, (C ) as well as the affected

f

crack length over which retarded crack growth occurs. Figure 102 shows the
case for many cycles of high stress, SI, followed by a lower stress, S2' For

convenience, the stress ratio for both stresses is taken as zero. It is well
known that, initially, the crack growth during the lower loading, $25 is retarded.

54



The crack closure model assumes that the closure stress, S , varies as shown.
c

Immediately prior to the change in stress, the closure level is the stabilized
level, S , associated with S1, and varies as shown through some affected

length, p, to the stabilized value, S c2 associated with level S The

expression defining the variation is given by:

AaB
Sc =S -(Sc Sc2) ( ) for o < Aa p (22)

1WE

where

S = Generalized closure stress
c

Aa = Crack growth since the stress change at a 0

p = Plastic zone radius caused by SI at a°

B = Empirical exponent

By definition, Sc > S c. It will be shown that the crack growth rate following
1 2the load change is immediately retarded.. Delayed retardation does not occur.

Previously, it was stated that a value of Cf = 0.4 provided a good
0

fit to the variable amplitude aluminum data. This value can be verified and
in addition, the parameters p and B may also be calculated. Figure 103 shows
schematically how the crack growth rate varies as a function of Aa subsequent
to the load change. Immediately after the load change, the rate is (da/dN)l.

This value is used in Equation (19) while at the same time setting Smax = S2,

S S and a = a . For R = 0, S =S C so'that:
c c10 c 1 0

da) C[(2 1 fo~ a(n23)
- i S= 2 - SI Cf

dN [ 1. f-C
0
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which can be solved for Cf since all other parameters are known. This was the

0
procedure used to obtain Cf from test data for several high-low loading

0

sequences.

Returning to Figure 103, the affected length p can be determined by

inspection. Finally, at some intermediate value of Aa, say Aa/p = 0.5
arbitrarily, the crack growth rate (da/dN)2 may again be inserted into

Equation (19), this time using the previously determined value of C f Again,
0

S = S2 but a = a + p/2, so thatmax 2O

n

(/' C[('2 Cc) c (a + p/2)] (24)

0

The value of S obtained from Equation (24) is inserted into Equation (22)
c

with Aa/p = 0.5 to obtain B. A single high-low test sequence, therefore, can
be used to obtain C , p and B, but the results from several test sequencesf

0

are recommended in order to be reasonably certain that the parameters obtained
are correct.

In many cases, the measured crack growth rates subsequent to a load
change are not well behaved and may demonstrate considerable scatter. Measure-
ments may not have been taken sufficiently close together during this transient
period so that a curve, such as that plotted in Figure 103 can be developed.
This situation did occur during the test program and an alternate technique
was developed to obtain the three parameters Cf , p and B.

0
The approach involved assuming values for the three parameters. From

these, Equation (22) was used to determine S as a function of Aa. This resultc

was used in Equation (19) which was numerically integrated to produce an a vs.
AN curve. The three parameters were varied and the predicted and measured

s

a vs. AN curves were compared until agreement was obtained. This technique
5

is effective as long as at least one data point falls within the affected
length, p.

A logical sequence for determining Cf , p and B is shown in Figure 104.
0

First, assume reasonable values of p and B (say plane stress plastic zone and

unity) and vary Cf until the initial slope of the a vs. AN curve (immediately
0
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following the load change) matches the data. Then the affected length, P, is
altered until the crack length when unretarded crack growth resumes agrees with
the data. As a rule, this crack length can be determined by plotting constant
amplitude crack growth on the apparent steady-state growth for the data and
estimating the point where the calculated and measured curves diverge as shown
in Figure 104. Finally, the parameter B is varied until the number of delay
cycles agrees with the data.

For the 2219-T851 aluminum alloy, the values of the parameters obtained
were:

cf = o.4o 2

p P plane stress plastic zone radius

B ýý 1

It was shown in subsection 3.2.1 of this report that, for a different
analytical technique, a plane strain plastic zone provided a good fit to the
aluminum data. However, when using the assumed closure variation outlined
above, it was found that the plane stress plastic zone provided the best fit.
This is probably due to the manner in which the closure level is assumed to
vary. When the closure stress approaches the stabilized closure level, the
crack growth rate is nearly constant amplitude and the resultant crack length
vs cycles curve is almost the same as its constant amplitude counterpart. In

this case, the bulk of the retarded crack growth occurs over the first portion

of the affected crack length which, for the cases shown, approximates the

plane strain plastic zone.

Figures 105 through 107 present a vs. AN test data and predictions
s

for several cases. The results verify that the parameters obtained reasonably
represent the material.

The Ti 6AI-4V titanium test data were considerably more difficult to
analyze. As discussed in Section 3 of this report, the only significant,

measureable parameter was the number of delay cycles, N . It was therefore

assumed that the values of Cf , p and B were identical to those for aluminum
0

(p = plane stress plastic zone). Figures 108 through 110 show a vs AN data

and predictions for several titanium test specimens. The results again indi-
cate that the parameters are reasonably representative of the data.

For materials such as the titanium investigated here, and others having

fairly high yield strengths, the affected lengths are generally quite small.
It is necessary to obtain very accurate a vs N data subsequent to the load

change. However, if a sufficient number of less-accurately measured cases are
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available, representing different stress intensities at the overload obtained
for different stress combinations and crack lengths, it is possible to obtain
reasonable values of Cf , p and B through a process of trial and error.

0
Initially it was specified that the stress ratios for the two stresses

in the high-low sequence be zero. The procedure described above may be applied
to cases where R > 0 except that, to simplify the analysis, the minimum stress
should be the same for both maximum stresses. This requirement will become
clear in the discussion regarding the effect of minimum stress variations on
closure level. In addition, the minimum stresses should in no case exceed,
and preferably be much lower than, the closure stress expected for either
the high or low stresses in the sequence. If the closure stress is less than
the applied minimum stress, Smin' then, no interaction should occur. There is

some disagreement as to whether this premise is correct or not (eg. Ref. 17),

but it has been assumed to be true here.

Effect of Minimum Stress on Closure - Tests have shown that the two
loading sequences shown in Figure 111 produce the same crack life subsequent
to the load change. This result is shown schematically in the lower portion
of the figure. Tests of this type were not run during this program. However,
an indirect proof follows. It has already been shown that closure is a func-
tion of stress ratio (ref. Equation 21) and, therefore, the stabilized value
for the high stress in sequence B must be higher than the equivalent value in
sequence A. The explanation for similar crack growth behavior subsequent to
the load change is that the closure stress in sequence B quickly changes to
approximately the same value as in sequence A. The key parameter in this
sudden fluctuation is the minimum stress.

Figure 112 shows actual crack closure (load vs. COD) curves for an
aluminum specimen subjected to an initial stress ratio of 0.5 and subsequently
to a stress ratio o0 0.05. Because the maximum and minimum applied loads are
known and the ordinate is linear, any value of load on the curves may be
obtained. Further, the displacements need not be calibrated since they are
proportional to the local displacements near the crack tip and, as such, any
non-linearities on the load-displacement curve represent equivalent crack tip
displacement non-linearities. The arrows parallel to the upper portion of the
curves indicate the loading phase (loading up or unloading) and the arrows
approximately normal to the traces represent the estimated crack closure (and
opening) levels. In all cases, the maximum applied load was the same (6 ksi).
Apparent differences in maximum load and load ranges were caused by adjusting
the plotter controls.

During cycles 0 and 1, the closure stress is stable and slightly
higher than the minimum stress. During the unloading portion of cycle 2, the
closure level remains the same. Loading up from the new minimum stress
(R = .05), the crack opening stress is seen to be significantly lower than its
preceding closure value. After an additional cycle, the level is again reduced
and by cycle 4 has apparently stabilized at a value of about 1.2 ksi (20% of
the 6 ksi maximum). Although this value (20%) is somewhat lower than for
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other typical data with R = 0.05, the significant item here is that the closure
stress was reduced considerably and restabilized in only two cycles.

Figure 113 presents similar data. The initial stress ratio is 0.7 and
no crack closure (or opening) is apparent during cycles 1 through 3. While
unloading during cycle 4, the crack is seen to close at about 55% of the maxi-
mum load. During reloading, the crack opening stress occurs at a very low
value and is seen to stabilize at that value (cycles 5 and 6). In this case,
the crack was quite long so that considerable plasticity existed. The absolute
values of the clousre levels again appear low, but the significant aspect is
that only one cycle of the new low-load was required to stabilize the closure
level. The crack closure behavior shown in the two figures supports the results
shown in Figure 111.

The crack closure model assumes that step-wise changes in closure level
such as those described above occur during the first load cycle during which
the minimum stress decreases. This causes a step-wise change in the crack
closure stress as shown in Figure 114 for the loading sequence shown. Prior
to the load change, the closure factor, CfV is calculated using Equation (21)

where R = S /S and S S .Cf. Immediately after the application of the
min21 1 c1  1 f

new, lower minimum stress, S the closure factor, C, is calculated from

Equation (21) using R = S mn/S and S'c = SI'C' Starting from this value,
mnan 2  1 c1  f

the closure stress varies as described by Equation (22). For the loading

sequences in Figure 111, it can be seen that the calculated values of S'
c

1

for sequence B, and S for sequence A, are identical. The subsequent closure

variation is therefore identical and the calculated (and observed) crack
growth behavior should be the same. This premise is verified indirectly by
the results shown in Figures 115 and 116. These figures present a vs. AN

5

data for compact tension specimens subjected to a constant maximum load of 951
lb. In Figure 115, the previous stress ratio was 0.7 (Pin = 666 lb). At
AN = 0, the minimum cyclic load was reduced to zero. A constant-amplitude

s

calculation for the craack growth under P = 951 lb. and R = 0. agrees closely
with the data. From equation (21), the closure factor, Cf, is .77 for R = 0.7

and 0.4 for R = 0. The corresponding closure loads are 732 lb. and 384 lb., a
significant difference. If the 732 lb. closure load were initially effective,
the a vs AN data would not agree with the calculated constant amplitude cracks

growth behavior.

In Figure 116, the maximum load was again held constant at 951 lb. and
the previous (prior to AN = 0) stress ratio was 0.5. At AN = 0, the stress

5 5
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ratio was reduced to 0.3. The corresponding closure loads are 578 lb. and
472 lb. Again, the previous high closure load did not affect the crack growth
for R = 0.3, since the calculated constant amplitude growth agrees closely
with the data.

The crack closure model performs this minimum-stress adjustment regard-
less of the relationship between S and S2 (i.e., even for the case where

S2 S.*) The only criterion is the relationship between the minimum stresses.

Because of the manner in which the minimum-stress adjustment is per-
formed, a single cycle of reduced minimum stress has the effect of immediately
reducing the closure level, and affecting the subsequent crack growth. This
concept is easily extended to handle compression spikes and will be discussed
subsequently. It will be shown later that for certain materials, the impact

of this reduction is not very significant.

Effect of Single and Multiple Overloads on Subsequent Crack Growth -
It has been shown by several investigators (References 14 and 18) that a single
overload cycle, superposed on constant amplitude cyclic loading, produces a
lesser degree of subsequent retardation than several overload cycles. None
of the currently existing models (References 10 and 11) differentiates between
the number of overload cycles. They assume that the crack growth subsequent
to any number of overloads is always fully retarded. A method to account for
the number of overloads effect has been developed for the crack closure model.

In general, one overload cycle produces some subsequent retardation,

two overload cycles produce more, and so on. There appears to be a limit to
the amount of retardation which can be attained for a given material
(References 4, 14 and 16). Figure 117 shows schematically how the closure
stress might vary during a low-high loading sequence. Prior to the load change,
the closure stress is that stabilized value, S associated with the initial

loading, SI. Subsequent to the load change to S2, the closure stress increases

to the stabilized value, S c2 associated with stress level S 2 Data gathered

02
prior to and during this program indicates that the closure level varies as a
function of the number of cycles, NOL, of the overload stress level, S The

number of overload cycles at which no further increase in closure level occurs
is defined as N sat. If no overloads are applied, the closure stress does not

change and crack growth during subsequent cycling at Sl would be unretarded.

If N0L > N sat, the retardation of the crack growth during subsequent cycling

at S would be maximized. Intermediate values of N0L (0 < NL < N sat) would

produce intermediate values of retardation. Figure 118 presents this effect
schematically.
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Some of the data gathered during this program indicated that the over-
load ratio, O/L, must attain some minimum value before the overload stress
has any apparent effect on subsequent crack growth. (The overload ratio, O/L,
was defined earlier as the ratio of the overload stress to the baseline stress,
SoL/S.) For example, Figures 119 through 123 present a vsN data for specimens

subjected to single discrete overloads where the overload ratio was 1.25, 1.4
and 1.5. Calculated constant amplitude growth curves (neglecting any growth
or retardation due to the overloads) are also shown. It can be seen that the
calculated curves agree very closely with the data. This indicates that over-
loads with O/L values <_1.5 have negligible effect on the crack growth behavior.
Therefore, the closure stress is unaffected for 1.0 < O/L < 1.5.

Figure 124 presents the ratio, R (the calculated closure stress after

one overload cycle over the initial closure stress), vs the overload factor,
OIL, for data gathered during several single overload events. The closure
stress immediately after the overload, S , was calculated by assuming

c
1

different values of S and comparing predicted a vs AN curves with the data.
c1 s .

Equation (21) with the values of C o p and B for aluminum was used to define
f0

the variation of S and Equation (19) was numerically integrated to obtain ac

vs AN . The values in parentheses represent the number of events analyzed to
s

produce the plotted value. The diagonal, dashed line represents the case where
the closure stress equals the stabilized value. If the calculated points fell
along this line it would mean that there is no difference between one and many
overloads. It can be seen, however, that almost all of the values lie below
the line. It can also be seen that R is equal to 1 up to an overload ratio

C

of approximately 1.5. This means that after one overload cycle, for O/L.. -1.5,
the closure stress does not increase.

At O/L = 1.8, there is considerable scatter in the calculated results
(1.2 < R < 1.8). These points were re-plotted in Figure 125 along with cal-c

culated values of Rc for values of NOL > 1. (Other data points for NOL = 50

to 2000 cycles produced values of R = 1.8 but are not shown here.) The
C

number of overload cycles that causes saturation, Nt, is apparently between

10 and 20. The trend of the data based on NOL > 1 indicates that the value

of Rc at NOL = I should be about 1.4. Since it was desired to produce a con-

servative prediction based on these data, a value of 1.2 was selected. This
means that the closure stress after NOL = 1 is 2/3 (1.2/1.8) of the stabilized

value and is conservative since the calculated closure stress is less than the
actual closure stress. The calculated subsequent retardation will therefore
be less than the actual retardation.
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The parameter y is defined as:

Closure stress after NOL (25)

Closure stress after Nsat

and is a function of the number of overload cycles, N OL For NOL 1, y = 2/3

and for NoL Nsat, y = 1. It was assumed, therefore, that the closure stress
after NOL = 1 was 2/3 of the stabilized closure stress regardless of the over-

load ratio. This assumption is shown as the solid line in Figure 124. The
dashed line represents the closure levels for N OL_ N sat. In no case, however,

can R be less than unity since the closure stress would not be expected toc

decrease after an overload(s) has been applied.

The data of Figure 124 are replotted in Figure 126 as y vs NOL for all

values where O/L 1.5. The value of y was assumed to vary linearly as:

N0L - 1 (26)

N sat

For 2219-T851 aluminum:

N -1

Yl = 2/3 so that: y = 2/3 + 1/3(Nt L 1 (2 6 a)

The value of Nsat was selected (somewhat arbitrarily) as 13, but is substan-

tiated by the results of Ref. 18. There, the authors indicated that for 7075-
T6 aluminum, when NOL = 10, the delay (retardation) was nearly maximized. In

all probability, the expression used here for y as a linear function of NOL is

incorrect (and unnatural). It is suspected that y should approach a value of
1 asymptotically. An insufficient number of values of NOL were investigated

to test this assumption and the crack closure model assumes the linear function
to be correct.

Titanium specimens subjected to single overloads with overload ratios of 1.25,
1.5 and 1.8 were tested. Where the overload ratio was 1.25, the overload had
little or no effect on subsequent crack growth. Unlike the aluminum, the
titanium overload ratios of 1.5 did produce measurable crack growth retardation.
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Results similar to the aluminum results were obtained although considerable
scatter in the calculated values of y was encountered. These results are
presented in Figure 127. For the titanium, the parameters selected were:

Y = .8o

N =100
.s at

This value for Nsat is supported by Wei (Ref. 14) who measured delay cycles

as a function of the number of applied overloads for Ti 6A1-4V titanium. He __

found that the number of delay cycles was maximized after approximately 100
overload cycles under constant stress intensity conditions.

It is worth noting that the evaluation of y is based on data obtained
predominately at stress ratios which were nominally zero. It is probable
that the variation of closure load with the number of overloads is signi-
ficantly different at higher values of R. This conclusion can be reached by
considering probable causes of the variation in closure with the number of
overloads and some of the data presented in this-program.

Previous investigators (Ref. 19, for example) have attributed the
variation in retardation to the fact that, with increasing numbers of over-
loads, the crack propagates further into the overload plastic zone before
the return to constant amplitude loading. That this is not the governing
phenomenon is demonstrated by the low values of Nsat found in this program

(particularly in aluminum), during the application of which a crack would
propagate through a very small percentage of the plastic zone. Additionally,
the titanium, which has a much smaller plastic zone than the aluminum, required
a much larger number of cycles to reach saturation even though the overall range
of crack growth rates investigated was nominally the same.

The number of cycles required for saturation is of the same order of
magnitude as the number of cycles required to reach stability in a cyclic
stress-strain test. This is what one might expect if saturation was reached
after the local crack-tip residual stress pattern stabilized in a similar
manner. If this is indeed the governing phenomenon (and certainly local cyclic
stress-strain behavior should play some role), then a significant variation
in saturation cycles with stress ratio is to be expected. Consider a test
being run at a high R value such that the closure load caused by an overload
is below the minimum baseline load. Subsequent cycling would produce totally
linear load-displacement records, the local stress-strain behavior would be
essentially elastic, and no further changes in residual stress patterns would
occur. Therefore, at high R values, the number of cycles to saturation would
be one. The important point in this argument is that the closure load is
below the minimum applied load. Thus, the amount of "crushing" or closing
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below the closure level may control the number of cycles it takes to achieve
stability in the residual stress pattern and, therefore, to reach closure
saturation. A measure of the "crushing" might be the difference between Cf

and R as shown schematically in Figure 128.

The data of subsection 3.5 tends to support this conclusion. Consider
for example Figure 76. Retardation is obviously present. However, the model
presently proposed predicts a closure level of 832 lbs. due to the basic con-
stant amplitude loading and a closure load of 762 lbs. due to the single over-
load application. Therefore, the model would predict no retardation. The low
closure load is due to the fact that, after the first cycle, only 2/3 of the
overload saturation closure level is reached. At the other extreme, assume
that the saturation level is reached for this R value (1/3 for the overload)
so that a closure load of 1069 lbs. is obtained. Then significant retardation
would be predicted. A more reasonable assumption might be a linear variation
in y with (Cf - R). This would produce a closure load of 912 lbs.

Presently, there is insufficient data to determine whether or not
these hypotheses concerning the variation of the saturation behavior with
stress ratio are valid.

Effect of Compression Loading on Closure - In the preceding discussion,
it was shown that a single cycle of reduced minimum stress is treated as pro-
ducing an immediate reduction in the closure stress. This concept can be
extended to the case where the minimum stress is negative (compression).
Figure 101 shows that, as the stress ratio is reduced below zero, the closure
factor decreases slowly. This implies that for both 2219-T851 aluminum, and
Ti 6A1-4V titanium, the application of compression stresses is only slightly
more damaging than the application of minimum stresses which are equal to zero.
This is also apparent from the constant amplitude data, where the crack growth
rate for R = -1 is only 33% faster than for R = 0 at a given AK (Equations la
anrd 2).

The crack closure model treats the cases of negative (compression)
loads as an extension of the minimum stress adjustment. Figure 129 shows
schematically how the closure stress varies for the case of a high-low loading
sequence where the minimum stress of the low portion of the sequence, S ,min2

is negative (compression). Before the load change, the closure stress, S ,

is the stabilized value associated with the initial (high) stresses, S and

S . . Immediately after the load change, a new closure stress, S' = S C
min1  c 1  1 f'

is calculated. Equation (21) is used to determine Cf and R is taken as

Smin2/S . The closure stress, Sc, then varies from S' to S as described by
mn2 1 c c1  2

Equation (22).
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Effect of Compression Spikes on Subsequent Crack Growth - Compression
spikes and underloads are treated by the model in the same manner as constant
amplitude and step-wise loadings. Underloads are defined as single cycle
excursions of the minimum stress to lower tensile values, where the nominal
stress ratio is greater than zero. These loading sequences are shown sche-
matically in Figures 130 and 131. Prior to the application of the spike load,
the closure level is the stabilized value, S , associated with the applied

c
stresses S and S min. Immediately after the application of the spike loads,

a new, lower closure stress, S', is calculated from Equation (21) using
c

R = S 2/S . The closure level then returns to the stabilized level S in the

same manner as described under the heading "Increasing and Decreasing Closure
Level" below.

For load sequences such as those described, and particularly during
spectrum loading, it is common to calculate modified stress ratios based on
preceding maximum stresses and current minimum stresses which are much less
than -1. Actual values of R < -1 might also be encountered. Data were not
obtained for R <-1 under constant amplitude loading conditions. Therefore
the closure behavior, either measured or calculated from crack growth rate
data for large negative R values, is unknown. Based on the behavior of Cf

in Figure 101, it appears that the closure level asympototically approaches

some minimum value as R becomes more negative. The model therefore treats
values of R < -1 as R = -1 until additional data for R < -1 is obtained.

Increasing and Decreasing Closure Level - It is necessary to define
whether the closure level is increasing or decreasing during variable amplitude
loading. The current closure stress is that value which exists prior to a
load change. It may be modified by overload or minimum stress considerations
immediately after the application of the new loadings. The expected closure
stress is the stabilized value associated with the new loading.

If the current closure stress is greater than the expected value, a
decreasing closure situation exists and the behavior of the closure stress is
defined by Equation (22). Generally, for this condition, the drop in closure
level requires many applications of the new loading to propagate the crack
through the affected length established by the previous loading. Conversely,
when the closure level is increasing (current closure stress is less than the
expected closure stress), Equation (26) applies, and it takes very few cycles
of the new loading to regain a stabilized closure value. In the latter case,
about 13 cycles are required for the 2219-T851 aluminum and approximately 100
cycles for the Ti 6AI-4V titanium to attain stability.

Variable Amplitude Loading - Previous discussions have described how
the model treats crack closure during constant amplitude and discrete load
change sequences. During variable amplitude loading sequences, load changes
occur much too frequently for stabilized conditions to occur between the load
changes. Typically, several (or many) transient conditions overlap. The
following discussion describes how the model treats these conditions.
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Figure 132a presents schematically how the closure level varies for
the case of increased maximum load when the minimum load is held constant.
Prior to the load change, S is stabilized at Sc . After the first cycle ofc c

S 2, Sc is Sc y from Equation (26). In this case, S y > Sc . Thereafter,

S increases to S by Equation (26). The number of cycles of S 2 required to

reach S is Nsat'c 2  sa

Figure 132b shows a similar case, except that immediately after the
load change, Se2 y is less than S c In this case, the value of NOL in

Equation (26) is replaced by the value N' and y is replaced by S IS
CL c 1c2

S C 1 N, L 1 (2 6 c)

S c 2 1+(- ' Nsat 1 )

The value of N' obtained from Equation (2 6 c) is the apparent number of over-
OL

load cycles (cycles of S2 in this case) which have already been applied to the

crack. Cycles of S2 are then counted starting at NO' rather than zero, and

Equation (27) is used to calculate the closure behavior starting at N'L. It

can be seen that, for Sc > yS c, the number of overload cycles required to

reach Sc2 is always less than N sat. In the limit, when Sc1 S c2, the number

of overload cycles is zero and is physically consistent.

Figure 133 presents two variations of the cases previously discussed.
In Figure 133a, the maximum stress is held constant while the minimum stress
is increased. This case is handled in the same manner as those presented in
Figure 132. The number of cycles to achieve stability is < N sat. In Figure

133b, the maximum and minimum stresses change as shown. Immediately after the
load change, the minimum stress adjustment is employed to reduce the closure
stress to S' Equation (26) is used to determine if a subsequent adjustmentc 2

upward to S" is required. If so, the closure stress then varies over N
c 2 sat

cycles to S (solid line). If not, the closure stress varies to S along

the dashed (alternative)line. In the latter case, NOL can be less than or

equal to N depending on the relative values of S' and S (alternative).
sat 

c2 2
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The preceding discussion covered typical cases of increasing closure.
All cases of increasing closure aretreated in the same manner. The extension
of these cases to variable amplitude loading is fairly simple and requires
only the use of Equation (26c) to adjust the cycle count for use in Equation
(26). In all cases, for S > S , or S > S' I, the closure condition is

.c2 . c1  c 2  c 2
defined as increasing.

The treatment for decreasing closure is more complex for two reasons.
First, many of the potential interaction situations were not investigated
during the test program. Even those cases which were investigated were diffi-
cult to analyze directly because of the limited amount of crack growth during
a given load level and because of the small affected lengths. For example, -KM
it is difficult to apply several load sequences within a given affected crack
length (which may be of the order of 0.020 inch) and to optically measure
transient crack growth behavior during each of the load sequences to obtain
meaningful data. As described earlier, the crack growth subsequent to the load
change was not well behaved, even for cases of discrete load changes. Secondly,
from a modeling standpoint, a complex load history requires a complex book-
keeping capability. The question of the significance of some previous load
sequence also arises. For these reasons, only those parameters deemed to have
the greatest influence on crack growth retardation are tracked by the model.
These are:

p - affected cracklength over which transient behavior occurs

a - current crack length

a - crack length at which p was generated
0

a - a + p, elastic-plastic interface
p o

a - crack length at start of current loading
s

Smin - previous, smallest minimum stress which was applied while
p a <a<a

o p

S - current maximum stress

Smi - carrent minimum stress

S - existing closure stress

S - expected stabilized closure stress for S and Sc 2 min
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The affected length, p, shown in Figure 134, is generated by some
previous maximum load, Sp, applied at a and assumed to be proportional to the

Irwin plastic zone radius:

P= o (27)

where a is the material yield stress. The coefficient 3 is assumed to be a
y

variable and can be the plane strain value (,the plane stress value

or any other value which was determined to fit the data as described

previously. As long as the crack tip, a, is within the affected length
(a < a < a ), transient conditions exist. For a less than a (not possible)

or greater than a , stabilized steady-state conditions exist. If, during the

application of a given load level, a equals or exceeds ap, stabilized conditions

prevail throughout the balance of that level. The extent of the elastic-
plastic interface, a p, is updated (using S in Equation (27)) at the beginnning

and at the end .of each load level as required. Whenever a is updated, S isP P
set equal to S. For the following discussion, it is assumed that the crack
tip is always within the affected length.

The crack length at the start of the current loading, a, is used in

Equation (22) to define the downward movement of the closure level. The
pertinent geometry is shown in Figure (134) and Equation (22) becomes:

B
a -a

S = S - S- (S -c 2 ) (a a ) (22a)

The previous, least minimum stress, Smin , is tracked for use in the

p
minimum stress adjustment. Whenever a new minimum stress, Smin which is

lower than S . , is encountered, the minimum stress adjustment is applied to

p
calculate a modified value of Scl The effective stress is Smin/Sp for use in

Equation (23). In certain instances, the modified value of S exceeds the
c8
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original value of S c In this case, the original value of S is retained.

Finally, Smi is set equal to Smin.

p

The expected stabilized closure stress, Sc . is the endpoint closure
C2

stress in Equation (22) or (22a) when a > a .p

Figure 135 presents schematically the treatment of three potential
situations for a three level descending load sequence. The minimum stress is
taken as zero for all load levels. In Figure 135a, there are a sufficient
number of cycles of S2 and S3 to propagate the crack through the affected

lengths p1 and p 2 respectively. The subscripts of p are associated with the
stresses which created each p (i.e. p1 was caused by S ). The appropriate

parameters are inserted into Equation (22a) and the closure behavior within
each affected length is defined. (The exponent B in Equations (22) and (22a)
has been depicted as unity in all figures for convenience.)

Figure 135b shows the next higher level of complexity which can occur.

Here, an insufficient number of cycles of S are applied to grow the crack
2

through a . The closure level has declined to a value S' where (S >
P1  c 2  c 1

S ' > S ). In addition a < a so Equation (22a), for the closure vari-
2 2  p1  -

ation during S3' becomes:

B

S = S S' -S for a < a < a
c2  c2 Pls

Figure 135c presents a similar case except that a > a . Now
P2  p.1

Equation (22a) becomes:

B

- - -- for a < aS C' S Sc a asP
c2 c2 P3) s3) p 2

69



to define the closure variation during the application of S . The location

of a 0 , originally equal to a ,is now advanced to be equal to as3 or the crack

length from which the new elastic-plastic interface is measured. In addition,
the value of S originally equal to S is updated to S2.

In all three figures, when the loading S3 is completed, steady-state

conditions exist and every parameter would be updated based on S . The

extension of these rules for more complex loadings follows logically.

Figure 136 presents cases where the maximum and/or the minimum stresses
vary. In the first case, (Figure 13 6 a), the maximum stress is held c6nstant
and the minimum stress decreases in steps. For this type of load sequence,
only the minimum stress adjustment is employed at each load change to calculate
a step-wise change in the closure level. Interestingly, this type of loading
sequence has no interactions and the crack growth during each part is solely
constant amplitude in nature.

Figure 136b presents two sequences, the first requiring a minimum stress

adjustment and the second a simple application of Equation (22a).

A slightly more complex situation is depicted in Figure 13 6 c. At the
pcLnt where S2 begins, the minimum stress also changes to S min2 . First, the

minimum stress adjustment is applied to calculate S' In Equation (21), RcI

is set equal to Smin /S to obtain C' and S' SI C'. The closure level
S2 1 f c f

then varies through the affected length, p, caused by SI, to Sc2 by

Equation (22a).

4.1.3 Results and Discussion

The proof of any model lies in its ability to predict the crack growth
behavior of a specimen, or component, subjected to any arbitrary loading
sequence. This section presents results obtained by the crack closure model
for a variety of loading conditions. Almost all of the specimens and/or
loading sequences were selected at random in an effort to be as objective as
possible.

Constant Amplitude - Figures 137 through 143 compare constant amplitude
predictions obtained by the model with test data. These results, obtained for
various stress ratios for both aluminum and titanium, were used to verify that
the closure equation (Equation 21) reasonably represents the material behavior.
Figures 137 through 139 are for aluminum specimens subjected to stress ratios
of .5, 0 and -1 respectively. The good correlation is typical of the aluminum
behavior.
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Figures 140 through 142 present the results for titanium specimens
subjected to stress ratios of 0.5, 0.3 and 0.05 respectively. Here, the

results are a little scattered. This was attributed to the basic material

scatter as described in Subsection 3.1.2 of this report. These results all

fall well within the scatterband described there.

The results presented in Figure 143 are in poorer agreement. The

prediction and a calculation using Equation (3), for reference, began at a
= 0.5 inch ( s 774,000 cycles). Equation (3) was fitted to this particular
data (the only R = -1 titanium test) and is shown relative to the data in
Figure 15e. There, it can be seen that for low values of AK, the data points
exhibit somewhat faster growth than that of Equation (3). Since this is the
crack length regime where most of the cycles are used, the slight over-
prediction of total life is not unexpected. I

The deviation between the prediction and the calculation using
Equation (3) can be attributed to the fact that the closure equation, Equation
21, did not fit the rate data particularly well. This is shown in Table 14.

For R = -1, Equation (3) produced a crack growth rate of 5.5 x 10-7 inch/cycle
at AK = 15 ksi Iinch. The closure equation, combined with the effective
stress crack growth equation, Equation (19b), produced an equivalent value of

4.07 x 10-7 inch/cycle. This results in a predicted life which is about 35%
greater than the life calculated from Equation 3.

These last results (Figure 143) indicate that either the data are incor-
rect (and that additional negative stress ratio tests should have been run for
the titanium) or, more likely, that the closure equation is not general enough
to properly represent different material behaviors.

Single Discrete Overloads - Figures 144 through 153 present data and
predictions using the crack closure model for 2219-T851 aluminum and Ti 6A1-4V
titanium. Results for overload ratios, O/L, of 1.25, 1.5 and 1.8 are shown
for both materials. For aluminum with values of O/L = 1.25 and 1.5 (Figures
144 through 147), the model predictions are quite accurate. For an overload
ratio of 1.8 the results are of mixed quality. In Figure 147, the predicted
life is approximately 84% of the test life but, in Figure 148, the predicted
life is only 60% of the test life. It should be noted that the predictions are
conservative or only slightly unconservative for all of the cases shown.

The predictions obtained for titanium (Figures 149 through 153) are
less accurate than those obtained for aluminum. For the lowest overload ratio
(1.25), the predicted life is 12% greater than the actual life, as shown in
Figure 149. Figures 150 and 151 present results for O/L = 1.5. For these two
cases, the predicted lives are 17% less than and 25% greater than the test
lives. At an overload ratio of 1.8, the model under-predicts the test lives
consistently. For example, the predicted life is only 51% of the test life
in Figure 152 and 47% of the test life in Figure 153.
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For both materials, as the overload ratios increase, the ratio of the
predicted life relative to the test life decreases. These results imply that
there is an overload ratio effect, or a relationship between the overload stress
(and/or baseline stress) to the material yield stress, or both, which has not
been accounted for.

The number of overload ratios investigated was, of necessity, restric-
ted. Perhaps higher values than those investigated would have proved to be
more productive. At the same time, however, it was desired to gather crack
growth rate data over specified rate ranges which restricted the magnitude of
the overloads. Further, in the case of the aluminum, stable tear considerations
placed an upper limit of 30 ksi liT on the maximum stress intensity caused
by the overload. The investigation of higher overload ratios requires that
smaller crack lengths be employed. In turn, the crack growth rates subsequent
to overloads become very low. These result in long test times and, potentially,
effective stress intensity ranges which are below the threshold for fatigue
crack growth. Most of these comments would also apply to stress level invest-
igations. In light of the above, it is felt that the results obtained thus
far are acceptable, particularly since they are almost always conservative.

Single Periodic Overloads - The predictions obtained by the crack
closure model for this type of loading are generally less accurate than those
previously described. Figures 154 through 161 present test data and predictions
obtained by the model for both materials. It can be seen that for 2219-T851
aluminum, except for the case shown in Figure 157, the model consistently over-
predicts the test life. In some cases, the predicted life is many times the
test life. These results are tabulated in Table 15 where the predictions were
extended to larger values than those shown in the figures. Even so, for
specimens AD-25-26 and -29, the prediction was terminated to reduce running
time on the computer.

The over-predicted results for the aluminum can be traced to the manner
in which the model treats overloads. Unless there are a sufficient number of
low loads to cause the crack to escape the effect of the overload, the closure
level continues to increase. This effect is shown schematically in Figure 132.
Each time the overload is applied, the closure stress increases. During the
application of the low loads, the closure stress decreases to some extent
depending on how far the crack extends through the overload-affected length.
If the closure stress has not decreased sufficiently when the overload is
applied again, it then increases by Equation (26c). If the closure stress
decreases enough, a quasi-stable situation develops where the closure stress
oscillates about some average value. For the case of the aluminum, the crack
lengths affected by the overload are quite large due to the relatively low
material yield stress. If only a few cycles of low load are applied (as was
the case here), the crack progresses only a small amount between overloads.
Further, the aluminum has a value of Nsat equal to only 13 cycles. This means

that less than 13 occurrences of the overload causes the closure level to attain
a value which is essentially the stabilized value associated with the overload.
Of course, during the application of the low loads, the crack propagated part
of the way through the overload-affected length and the average closure level
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was somewhere between the stabilized values for the overload and the low loads.
For the first five cases shown in Table 15, the combination of overload ratio
and/or few low-load cycles caused the calculated closure level to hover around

a value which was close to the stabilized value for the overload. This resulted
in a small effective stress range for the low-loads and a comensurate low crack

growth rate. In the last case (Specimen AD-25-27), the overload ratio was

low and the number of low-load cycles was sufficient to bring the average
closure level into what is apparently the right range based on the good
prediction.

The titanium predictions (Figures 158 through 161) are better than
those for the aluminum. For cases where the overload ratio is 1.25 (Specimens
TD-25-32, -39 and -31), the predictions are only slightly greater than the
test values. For cases where the overload ratio is 1.8, the predictions are
shorter than the test lives. These results for titanium are consistent with
those discussed earlier for single discrete overloads. There, it was con-
cluded that the effect of a single overload on subsequent crack growth, where
the overload ratio was 1.8, was not strong enough. The closure level did not
increase enough to produce sufficient subsequent retardation. It is apparent
that the parameters for single overload applications in titanium have not been
correctly defined.

Based on the aluminum results, it apppears that the model requires
additional work for the single periodic overload cases. However, there were
an insufficient number of different overload ratios and applications of low
loads to perform any meaningful effort.

Multiple Overloads - Multiple overloads fall into three basic cate-
gories. First is the case of many overloads applied (NoL > N sat). Second

are situations where 1 < N0L < N sat. Finally, there are multiple periodic

overloads, which are essentially two-level block loading programs.

Several predictions using the crack closure model for situations where
NOL > Nsat were presented in Figures 105 through 107 for 2219-T851 aluminum

with overload ratios of 1.8, 1.6 and 1.5. Figures 108 through 110 presented
similar results for titanium with O/L = 1.25, 1.5, 1.6 and 1.67. To complete
the range of overload ratios, Figures 162 and 163 present test data and
predictions using the crack closure model for 2219-T851 aluminum with O/L = 1.25
and 1.5 respectively. Similar results are shown in Figure 164 for titanium
with O/L = 1.8. For all of the cases, the predictions agree very closely with
the test data.

Figures 165 through 168 present similar data and predictions where the
minimum load was maintained at a high level so that the stress ratio for the
base loading was 0.50. The minimum load during the application of the overload
sequences was maintained at the same level as the minimum load for the base
loading. These predictions, most of which fit the data quite well, indicate
that the model not only accounts for the retardation caused by the overloads,
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but also properly accounts for the influence of stress ratio on closure level
during load interaction situations. These results tend to indicate that the
model can be applied to spectrum loading cases where stress ratios change with
each stress level on a random basis.

The process of finding the number of overload cycles which cause
saturation (the closure level attains the stabilized closure level for the
overloads) is an iterative one. Further, the value of Nsat (described earlier)

is markedly different for the two materials tested (i.e. Nsat = 13 for aluminum

and 100 for titanium.) As a result, there were a limited number of test data
gathered for the case where 1 < NOL < N sat. Test results for all of the data

obtained and predictions using the model are presented in Figures 169 through
171 for aluminum and 172 and 173 for titanium. It can be seen that the pre-
dictions follow the data very closely in all cases. These results indicate
that the model properly accounts for the effect of the number of overloads on
subsequent crack growth behavior, at least over the limited range of the data
collected here.

Finally, tests were performed for the case of multiple overloads
applied periodically, which is essentially a two-level block loading program.
Test data and predictions from the crack closure model are presented in Figures
174 through 180 for aluminum and 181 through 187 for titanium. These tests
were performed so that, for a given overload ratio, O/L, the relationship of
the number of overload cycles to baseline cycles was varied. For example, in
Figure 174, 100 overload cycles are followed by 1000 low-load cycles. In
Figure 175, all values were multiplied by a factor of 5 so that 500 overload
cycles were followed by 5000 low-load cycles. In Figure 176, the relationship
of overload cycles to baseline cycles was changed from 1:10 to 1:5. In
Figure 177, the loads were changed so that the stress ratio was 0.5 for the
low-load cycles (R = 0.05 for all other cases). Figures 178 through 180 are
similar to those of 174 through 176 except that the overload ratio is 1.8.
For all cases, the predictions agree closely with the test data.

Test data and predictions for titanium subjected to similar multiple
periodic overload sequences are presented in Figures 181 through 187. These
tests are similar to those previously described for aluminum. In all cases,
the predictions are accurate except for that in Figure 187. There, the stress
ratio for the low loading was maintained at 0.7 and the predicted life is
approximately 64% of the test life at a crack length of 1.4 inches. All pre-
dictions relative to the test data are, however, within the scatterband
described in subsection 3.1.2 for this material.

Block Loading - A variety of tests were performed on both materials
using three- and four-load level block loading. Test results and predictions
for aluminum are shown in Figures 188 through 193. Figure 188 presents test
data and a prediction by the model for a three-level high-low loading sequence.
The predicted life is approximately 71% of the average of the two test lives
at a crack length of 1.5 inches. Figure 189 presents similar results except
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that the loading sequence is. reversed to low-to-high. Again, the predicted
life is about 71% of the test life at a value of a = 1.5 inches.

Block random loading was applied to the specimens shown in Figure 190.
There, the load levels were maintained at the same values as for the low-high
and high-low sequences. In those cases, a total of 6000 cycles was applied
in each block.

For the randomized loading, each level was reduced by a factor of ten
to a total of 600 cycles per block, for convenience in testing. These cycles =
were randomly ordered within the block, but each block was identical. In this
case, the predicted life is about 53% greater than the average of the test
lives at a crack length of 1.5 inches.

Figure 191 presents data and predictions for specimens subjected to
low-high and high-low sequences, where the minimum load was maintained 500 lb.
There, the stress ratio for the lowest load was 0.50 as compared to 0.05 for
the previous cases. In addition, the load was reduced to zero at random
intervals. This reduction is similar to a ground-air-ground loading cycle.
The predictions neglect this zero load application and are based solely on the
load values shown in the table in Figure 191. This was done as a convenience
in making the predictions. However, it will be shown that the introduction of
an occassional underload spike (or compression spike) has very little effect
on specimen life. On this basis, the predictions which agree closely with
the data are considered to be valid.

Figure 192 presents results for specimens subjected to the randomized
spectrum. The single prediction nominally describes the average of the crack
growth behavior for both specimens.

The results for the only four-level block loading test performed on
aluminum are presented in Figure 193. The loads were identical to the values
given in Figure 189 except that a single cycle of 1000 to 25 lb. was added to
each block. The crack closure model predicts a life which is approximately
67% of the test life at a = 1.5 inches. At that crack length, the test life
is 52 blocks which is identical to the life of Specimen AG-25-08 (Figure 189),
where the initial crack length is nearly the same. The single cycle of 1000
lb. had negligible effect on the crack growth of Specimen AG-25-25 (Figure
193). The model predicts essentially the same result: 67% vs 71% of the test
life at a = 1.5 inches.

The predictions obtained for titanium, using the model, are typically
less accurate than those obtained for aluminum under nominally similar condi-
tions. Figures 194 and 195 present data and predictions for specimens sub-
jected to a three-level low-to-high block. The predictions are quite poor,
yielding lives of 16% and 48% of the test values respectively. In Figure 196,
a prediction is presented which is 51% of the average life for the two test
specimens shown. There, the loading sequence was high-to-low. The low pre-
dictions in all three cases can be traced to the affected crack lengths caused
by the higher loads. It is apparent that these values are too low, and that an
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increase in their magnitudes would cause the average crack growth rates to
decrease. Figure 197 presents a prediction and test values for specimens
subjected to essentially the same loads as those in Figures 195 and 196. The
differences are that the minimum load was not held constant in this case but
was 10% of the maximum load in each level, and that the loads were applied
in a randomized sequence, 600 total cycles to the block. There, the predic-
tion is fairly good. In Figures 198 and 199, the load ranges were held con-
stant, but the minimum load was increased to 400 lb. so that the stress ratio
for the lowest loading was one-third. The loads were applied in ascending
and descending order. The predictions are reasonably close to the data.

Figure 200 presents results for four-level block loading tests and
predictions. Again, the model predicts short lives which are 42% and 55% of
the test values for the high-low and low-high sequences respectively.

Typical Aircraft Spectra - Tests were performed on panel specimens to
represent typical aircraft spectrum loading. The test results and predictions
are presented in Figures 201 for aluminum and 202 for titanium. In this case,
two predictions were made. The first neglected levels 63 and 64 of the spec-
trum, the first of which is applied once every six blocks and the second, once
every eighteen blocks. The second prediction included the application of
levels 63 and 64 once every block. The actual predicted life would lie some-
where between the two predictions. For the aluminum, the average of the two
predictions is 58% greater than the test life at a half crack length of 0.7
inch. Again, the titanium prediction is short, the average being 42% of the
test life at a half crack length of 0.9 inch.

Compression and Underload Spike Loads - One difficulty with currently-
available models is that they do not accept compressive loads or stresses.
Even for the case where the stress ratio for the base loading is greater than
zero and a tensile overload is followed by a zero load (underload), these
models neglect the underloads. The crack closure model accounts for these
situations. However, all of the following examples are based on the crack
closure data obtained from single tests at R = -1 for both materials. Con-
sidering this, the results obtained indicate that the concepts are basically
sound.

Figures 203 and 204 present data and predictions for 2219-T851 panel
specimens subjected to occassional compression spikes (single compression load
cycles). In the first figure, the base stress range was 0.3 to 6 ksi tension.
Compression spikes ranging from 3 to 12 ksi were applied in a quasi-random
manner. The model overpredicts the test life by 20% at a half crack length
of approximately 1.4 inches. It is interesting to note that a constant ampli-
tude calculation for the base loading (6 ksi, R = .05) yields a life which is
almost identical to the prediction. A similar calculation for R = -1 is also
shown and yields about 85% of the test life at the same half crack length. The
implication of these results is that the compression spikes have very little
effect on the overall life. This is substantiated by the results shown in
Figure 204 where, in this case, the model under-predicts the test life by
about 18%. Although it is not shown, a constant amplitude calculation using
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S = 10 ksi and R = .05 produces almost the same life as the prediction. The
prediction errors of +20% and -18% are within normal data scatter.

The negligible effect of the compression spikes are caused by two
separate effects. First, for a fully-reversed loading where R = -1 (or
apparently for even lower values of R), the closure stress of Figure 101 does
not decrease very much. At the base loading with R = .05, the closure level
is about 41% of the maximum stress while, at R = -1, it is 34.7% of the maximum
stress. In this case, the base closure stress is 4.1 ksi. After compression
spike, it is 3.47 ksi and has only decreased by 10%. For values of R between =
-1 and zero, the difference is even smaller.

The second reason for the small effect of the compression spikes is
that it takes about 13 cycles of the base loading for the closure level to
regain its original value. These few cycles are an extremely small part of
the overall life of the specimen.

Figure 205 presents similar test results and a prediction for a
titanium specimen subjected to similar loading. At a half crack length of
one inch, the model predicts a life which is 42% greater than the test life. In
this case, it would appear that the compression spikes, ranging in value from
R = .5 to R = -2, have some effect on the subsequent crack growth. This effect
would be manifested in an increased crack growth rate subsequent to the appli-
cation of a compression spike. However, Figure 206 indicates that this is
not the case. There, crack length is plotted against cycles since the com-
pression stress, AN . Data and constant amplitude calculations for 10 ksi

5

and R = .05 are shown. It can be seen that the data do not generally exhibit
a faster crack growth rate than normal immediately after the compression spike,
but do exhibit a general, overall crack growth rate which is slightly faster
than the calculated behavior. For example, starting at a half crack length
of 0.5 inch, the data and calculated crack length differ by about 0.030 inch
after 60,000 cycles. The average calculated crack growth rate is about 75%
of the measured rate. These differences are cumulative, and account for most
of the error in the prediction shown in Figure 205.

Figure 207 presents data for an aluminum specimen subjected to occas-
sional tensile overload spikes followed by compression spikes. For the first
three events, the tensile spike overload ratio is 1.5. It was shown earlier
that, for aluminum, overloads of this magnitude have negligible effect on the
subsequent crack growth. For the 4th, 5th and 6th events, the overload ratio
is 2.1 for the tensile spikes. Overloads of this magnitude are expected to
have a significant effect on subsequent crack growth rates. The data indicates
that this is the case.

It is interesting to note that the compression spike did not reduce
the retarding effect of the tensile overload for any of the nine events. This
was verified by making another prediction which neglected all of the com-
pression spikes. The result was identical to the prediction including those
spikes. To understand the reason for this, follow the sequence of calculations
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performed by the model for the 6th event where the tensile and compressive
spikes are 12.6 and -18 ksi respectively.

"* Prior to the spikes, the closure stress for 6 ksi, R = .05 is
2.47 ksi from Equations (16) and (21).

"* Subsequent to the 12.6 ksi tensile spike where R = .023, the
closure stress is 3.41 ksi by Equations (16), (21), (25) and (26a).

" For the compression spike, the minimum stress adjustment is used.
The effective stress ratio is -18/12.6 = -1.43. As described
earlier, this is treated as -1. From Equations (16) and (21) the
closure stress would be 4.37 ksi. However, this value is greater
than the existing value (3.41 ksi) and so that lower value is
retained.

Therefore, the model predicts no effect of the compression spike, and this is
substantiated by the data. In order for the compression spike to have any
negating effect on the tensile spike, the tensile spike must be much larger, or
be replaced by several spikes to achieve a higher closure stress. No tests
of this type were performed, although data for similar tests, where the stress
ratio for the base load was 0.5 and the compression spikes were replaced by
underload spikes, were obtained. These will be discussed subsequently.

Figures 208 and 209 present data and predictions for aluminum specimens
subjected to underload spikes followed by overload spikes, and overload/
underload sequences respectively. The results are self-explanatory, the
model predictions being within 17% of the test life in both cases.

Figure 210 presents data for the case discussed previously where mul-
tiple overloads are followed by an underload spike. Two predictions are shown.
One includes the underload spikes following the overloads, and the other
neglects them. The model differentiates between the two cases. Unfortunately,
the data lies closer to the second prediction. These results are considered
to be inconclusive and, in the absence of additional data, no firm conclusion
on the effect of the underload spike can be reached.

One test was performed on a titanium panel specimen subjected to
tension/compression and compression/tension sequences, the results of which
are shown in Figure 211. It can be seen that the model overpredicts the test
life by approximately 55% at a half crack length of about 1 inch. The model
predicts that the compression spikes have no effect on a preceding tension
spike (overload) by the procedure outlined earlier for aluminum. These results
are also inconclusive since the closure function for negative stress ratios
was defined by a single test. Further, the 55% error is within the scatter
described in Section 3 of this report.

Titanium test results and predictions for specimens subjected to over-
load/underload, underload/overload, and multiple overloads followed by a single
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underload, are presented in Figures 212 through 214. Like the aluminum
results, the predictions agree closely with the data (greatest error 20 %)
for all three cases.

Based on the results presented here, it is felt that the model accounts
for compression and tension/compression interactions fairly well. This makes
it possible to account for, rather than disregard, excursions to zero load and/
or load reversals for typical aircraft spectra. It should be noted also that,
in general, the application of occassional compression or underload spikes
had little effect on the overall specimen life. Where they were preceded by a -
single overload cycle, they had minimal influence on aluminum, but did tend
to offset the overload effects on titanium. Where an underload spike was pre-
ceded by multiple tensile overloads, it significantly reduced the retarding
effects of the overloads in both materials. _-

It is suspected that compressive spikes, following single tensile
overloads which are of sufficient magnitude, may negate at least partially
the retarding effect of the overload. However, none of the specimens tested
during this program had high enough single overloads to test this theory.

4.1.4 Crack Closure Model Logic Diagram

Figures 215 and 216 present the overall and detailed logic flow for
the crack closure model. These charts are presented to provide additional
clarification of the decision processes of the model. Certain functions are
used in the charts and are described below. The significant equations are
reproduced here for convenience.

F(a) = Converts stress to stress intensity

da/dN(AK eff) = Crack growth rate based on AKeff, Equation (19)

Cf(R) = Cf as a function of R, Equation (21)

Sc(Aa) = function for decreasing closure, Equation (22)

y(J) = function for increasing closure, Equation (26)

p = governing affected crack length

da )A C[(Smax - S F n (19)

(7efff 1 1

C (R) = C + (C o C +R)p (21)
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B
S (Aa) (SSc - ) ; o Aa p (22)

y (j) = yI + (1 - Y)NOsa 1) (26)
Nsat-

p(S (max)) - F(a) S(max) 2

The charts are self-explanatory and, coupled with the discussion in subsection
4.1.2 of this report, should allow convenient use of the model.

4.1.5 Basic Data Requirements

The crack closure model offers a greater sophistication and variety of
loading options than currently available crack growth interaction mathematical
models. As a result, the basic data required to use the model are more complex
than for the other models. Additional data requirements center principally
around the measurement of crack closure and the effects of number of overloads.

The crack closure model requires constant-amplitude crack growth rate
data for at least three stress ratios. Two of these should be R = -1 and
zero. The third stress ratio must be greater than zero, but less than
the stress ratio cutoff value. If a value greater than the cutoff is used, an
erroneous crack closure function will result. Unfortunately, there is no
method of determining the cutoff value other than by obtaining crack growth
rate data at various positive stress ratios and then comparing the results on
a rate vs stress intensity range basis. Numerical procedures can be an aid
in this effort. For example, Equation (1) can be used in conjunction with
least squares and trial and error procedures to obtain q and R . Alterna-

co
tively, the data can be plotted and the stress ratio cutoff value can be
determined by inspection. The coefficient C and exponent n obtained from
Equation (1) are used in Equation (19) to calculate crack growth rates.

The constant amplitude data are used as described in subsection 4.1.2
to obtain the closure Equation (21) as a function of the closure factors at
R = 0 and -1, (C and C f). There the crack growth rate data were used in

Equation (19a) to relate closure factors at stress ratios other than zero to
the closure factor at R equal to zero. It should be noted that these data
only relate the closure factors, and do not define their absolute values.
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The magnitude of the closure factor at some stress ratio must be
determined. A stress ratio of zero is suggested for convenience. However, as
pointed out earlier, other values of stress ratio may be used with success
except that R must be less than the cutoff value, R co to obtain a valid

result.

The closure factor at the stress ratio selected may be measured using
techniques similar to those described in subsection 2.4 of this report. It
was pointed out there that experimentally-obtained values, based on the results =
of this program, generally exhibit considerable scatter. Comparatively small
variations in the closure factor can produce large errors in predicted life,
depending on the type of loading. As a result, an analytical method of
determining the closure factor is suggested.

One method, outlined in Subsection 4.1.2, was used with success in
this program. The technique employs Equation (22) and the numerical inte-
gration of Equation (19). The use of this technique requires the results from
at least one test where the loading sequence is high-to-low. As described in
Subsection 4.1.2, the method is iterative, but other useful data can be
obtained. In addition to the closure factor, Cf , the affected crack length

0
and the exponent B in Equation (22) can be obtained. Since these parameters
are also required as input data, the proposed test serves a three-fold purpose.

Finally, data pertaining to the number of overloads must be obtained.
As described in Subsection 4.1.2 (Effect of Single and Multiple Overloads on
Subsequent Crack Growth), the crack closure model assumes that the closure
stress varies linearly as a function of the number of overloads applied. The
required input data are y and N sat, which were described in relation to

Equation (26). The parameter y is the effectiveness of a single overload

cycle on increased closure level, while Nsat is the number of overload cycles

required to achieve saturation.

These parameters are obtained from test results for different numbers
of overload applications. Although the value of Nsat is generally unknown, the

results from this program and other sources indicate that Nsat is from 10 to

20 cycles for aluminum alloys, and is approximately 100 for titanium. The test
sequences shown in Figures 172 and 173, with the numbers of overloads altered
to suit the material, provide a good range of values. The results from at
least one single overload test are required to obtain y1.

The analytical procedures used to obtain y and Nsat in this program

are outlined below:

1. Obtain test data (a vs cycles) for different values of N0L where

the minimum stresses for both the overloads and baseline loading
are zero or nearly zero.
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2. Using the crack length vs cycles after the overload(s) and

3. The previously determined values of Cf 9 B and p,
0

4. Let S c in Equation (22) be an unknown.

5. Numerically integrate Equation (19) using different values of K c

(or S c ) until the calculated crack length vs cycles curve fits

the data. Note that S C must be greater than S C in Equation (22).

6. Using the value of S obtained from a single discrete overload
c 1

case, determine y 1 from Equation (25), taking N OL ý 1. For the

case where the minimum stresses are all zero, the closure stress
after N sat is C f times the maximum overload stress.

0

7. The value of y must be greater than the reciprocal of the overload

ratio, O/L. As mentioned earlier, unless the overload ratio for
single overload application exceeds some minimum value, the over-
load has negligible effect on subsequent crack growth. The minimum
values of O/L were found to be approximately 1.5 and 1.25 for
2219-T851 aluminum and Ti 6Al-4V titanium respectively. If y 1
is approximately equal to the reciprocal of O/L, the test results
are questionable and a larger overload ratio should be used.

8. The value of N sat can be determined by plotting the ratio of S C i
(or K C. ) from Step 5 above to the stabilized closure stress for

I
the overload against the number of applied overloads. This method
is shown in Figures 126 and 127 where y equals the ratio of the
closure stress after N OL overloads to the stabilized closure stress

for the overloads. The value of N sat is the value of N OL for

Y = 1.

To summarize, the data required as input for the crack closure model
are:

a. Crack growth rate data at three stress ratios. These yield the
crack growth coefficient, C, and exponent, n.

b. Closure factor at R = zero, C f
0
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c. Closure factor at R = -1, Cf and exponent p (obtained from a.
and b.).

d. Affected crack length, p, and exponent, B, for use in Equation (22).

e. Parameters y and Nsat for Equation (26).

4.2 RESIDUAL FORCE MODEL __

4.2.1 Concepts

The effective stress range approach seems to be the most straightfor-
ward method of explaining crack growth interaction effects. For example, it
was shown in Ref. 5 that the Wheeler Model (Ref. 10) can be related to the
Effective Stress Retardation Model (Ref. 11). The Effective Stress Retardation
Model can, in turn, be related to our crack closure model. Since all of these
models can predict certain crack growth interaction effects, it was thought
that a model based on the distribution of residual stresses left in the wake
of a propagating crack could provide a basic understanding of the overall
crack growth phenomenon. As a result, the Residual Force Model was developed.
Although some analytical problems related to certain crack growth interaction
effects were encountered, the basic concept is appealing since it may ulti-
mately lead to a prediction model which is less empirical than those currently
available. The development of the Residual Force Model and the results
obtained using it are described below.

4.2.2 Application to Model

Elber (Ref. 15) proposed that the phenomenon of crack closure could be
explained by the existence of residual tensile strains left in the wake of a
propagating crack. These deformations cause interference along the fracture
surface and, as the remotely applied stress, S, is reduced to zero, the crack
closes at some positive stress. The stress distribution caused by the crack
face interference tends to prop the crack open. Figure 217a shows this concept
schematically. A crack of half length a. is subjected to a remote tensile
stress, S, which causes a plastic zone of extent py. When the remote stress,

y
S, is removed, a reverse plastic zone of extent, ry, remains defining an area

of compressive residual stresses. In Figure 217b, the crack has propagated to
a new half length, a, and the crack tip is part way through the envelope of
compressive residual stresses developed as the crack propagates. Figure 217c
shows a residual stress distribution, S r, which represents the integrated value
of the residual forces existing from a rto a. Extending this concept to the

0

case where the crack has propagated a long distance, (Figure 217d), the crack
is now subjected to the residual stress, S., along the entire length of its
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faces. During the application of remote stress S, the crack tip stress

intensity is composed of two parts:

K = S 7a (28)

and

K r S r V/Tra (29)

For the case when S > S r5 the effective stress intensity is given by super-

position as:

AK eff = (S - S r (30)

If the crack can propagate only when it is open, as proposed by Elber, then
AK eff is the stress intensity range which should be employed to compute crack

growth.

In an effort to define the magnitude and extent of the residual stress,
S r the following assumptions were made.

" S r is proportional to S and may be proportional to SIG y where a y
is the material tensile yield stress.

" S r is related to the applied stress ratio, although no correlation

has been found.

" The extent of S r due to the application of one cycle of tensile

loading is one quarter of the maximum plastic zone size, as
suggested by Rice (Ref. 20) and is given by

r K ) 2 (31)
y 2a

where

for plane stress
27T

and

for plane strain
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Initially, it seemed that S should be equal to the material com-
r

pression yield stress. However, a review of Equations (28) - (30) revealed
that the crack could only be opened by the application of S > a . ExperienceY
indicates that this is not the case and that S must therefore be somethingr
less than a . It was decided that, since the value of S was not known, it

y r
would be taken as:

S = cS (32)r

Further, initial analyses indicated that S should be proportional to ther

ratio of applied stress over the yield stress:

S =L S G (33)
r (\ y

If the residual force proposition holds, then Equation (33) implies that all
materials should show a stress level effect on crack growth rates, even during
constant amplitude crack growth. Some materials strongly exhibit such an
effect, while many materials do not. Because our interaction studies using
the Residual Force Model have to date been limited to 2024-T3 which is an
insensitive material, Equation (32) has been used.

An interesting effect produced by this model is that delayed retarda-
tion is predicted. It was found that the delay period depends on the number of
overloads applied and that as the number of overloads increases to the satur-
ation value, the delay period decreases to zero. In addition, the model
predicts acceleration when changing from a low load to a high load. These
results are included in the following discussion of the development of the
working model.

Figure 218a shows a crack which has propagated to a half length, a ,

under the influence of remote stress SI, which has caused the residual stress

S r to be developed. At half length a0, a remote stress S2 ( where S2 > S1)

has been applied and then removed. The plastic zone p caused by S2 is shown,
along with the reverse plastic zone r which exists when S returns to zero.

y 2
The crack then continues to propagate under the influence of SI.
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Immediately after the application of S2 , and neglecting any growth

during the application of S 2 , the residual forces (stresses) acting behind

the crack are those caused only by the application of SI, and the residual

stress intensity is the same as for the constant-amplitude case for SI.

However, as the crack begins to propagate into the reverse plastic zone caused
by S2 5 the residual forces Sr begins to act behind the crack tip, and an

2
increase in K occurs. When the crack half length is, a + r , the influencer y

of S is most prominent and K is a maximum. As the crack continues tor2 r

propagate, S becomes remote from the crack tip so that its effect on K isr2 r

reduced, and when the crack half length is large relative to a + ry , the effect

of S on K approaches zero.
r2 r

If a crack propagation law of the Paris type is used, so that:

da = C(AKff)n (34)

and AKeff = K - Kr (35)

then AKeff is smallest when the crack half length is a + ry and da/dN is the

smallest at the same point. Therefore, the minimum crack growth rate occurs
at a point ry, from where the overload was applied and delayed retardation has

been represented by the model. Figure 218b shows the resulting crack growth
rate schematically.

To test this approach, an equation of the form

Kr=S sinl(c) sinl()- 1 _(L)2 +1 - ()2]

in = sin C nY-I +

was taken from Ref. 21. The force distribution for use in this expression is
shown in Figure 219. The equation given in Ref. 21 has been multiplied by two
to account for forces acting on both surfaces of the crack. At any crack
length, a, it is a simple matter to sum the effects of the various residual
stress distributions over the crack half length from zero to a, to obtain the
total K

r
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One drawback of this approach, is that it predicts that an overload
affects the residual stress intensity even after the crack has propagated
several plastic zone sizes. Recent experimental investigations, including
Ref. 4, indicate that this is not the case and that the effect of the overload
should have been dissipated by the time the crack has propagated through a
distance approximately equal to the plastic zone caused by the overload. In
an effort to circumvent this drawback, it was decided to include only the
effect of those residual stresses which extend back from the crack tip a dis-
tance equal to the distance from the crack tip to the elastic-plastic inter-
face. This approach forces the residual stress intensity to return to a
constant-amplitude value when the crack has propagated through one plastic
zone. Although this assumption is open to question, some justification might
be found in the fact that those forces closest to the crack tip have the most
effect on crack tip behavior.

An equation for the effective stress intensity range, AKeff, was

finally formed as

AKeff= S - - - sin-b)-- 1 (- ) +1 _ ]

(36)

In order to relate AK to the applied AK, it is necessary to introduce a
eff

modifying factor of the form

r sin- i(a (a - py (36a)7 2

as a denominator in the crack growth equation such that

"daN C/(AK e

n

C

{' - sin-1 a - - b

a 7(37)
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For the constant amplitude case, this equation reduces to:

n

Tr -- sin +___ 1- ___ (38)
-17 ( a_ (a a~)

- = C

sinT (a - a - Pyj

or

S a csr

Obviously, these expressions do not account for stress ratio or stress
level effects. However, it is felt that when an expression relating S rto

stress ratio and/or level is developed, it could be incorporated as a simple
modification.

4.2.3 Results and Discussion

The model was tested using data which strongly exhibited delayed retar-
dation. As stated earlier, this phenomenon was not strongly evident for the
materials tested during this program. Therefore, data from the literature
were employed.

Figure 220 shows data for 2024-T3 aluminum taken from Ref. 4 for
several loading sequences, along with the predictions using this model.
Certain liberties taken for convenience in the analysis procedure were:

"* Test data were constant K; analysis was constant stress.

"* Test specimens were compact tension; analysis assumes an infinite

center cracked panel.
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* Test stress ratios were .05 for AK = 15 ksiiUn. and .03 for AK
= 22.5 ksi Fin-.; analysis assumes all stress ratios equal to zero.

In light of the limited change in crack length, it is felt that the
influences of these modifications were minimal.

Figure 220 shows crack growth rate data vs crack growth increment
after a load change for four different loading conditions:

1) Number of overload cycles equal to zero (NOL 0, constant _

amplitude)

2) NOL =1

3) N0L = 450

4) NOL = 9000

The dashed lines represent predictions for N = 1 and 2 300. The
basic trend is evident and shows, for the case of N = 1, a minimum crack

growth rate when Aa is .08 inch. A comparison of the predicted and test curves
indicates that the curve shapes and magnitudes agree fairly well. In the case
of the Residual Force Model, when the limiting case of 300 or more overloads
is applied, a crack growth rate is achieved which is much lower than the data
suggests.

One characteristic of the Residual Force Model is that, as the number
of overloads is increased, the initial crack growth rate is reduced, until
saturation is reached, and then no further decrease in rate is observed regard-
less of the number of applied overloads. For the parameters a and ý chosen
for this analysis, saturation occurred after about 300 overloads had been
applied. Referring to Figure 220, one can see that this is not consistent
with the data, which indicate saturation sometime after 450 overloads.

A further difference is that the data indicate that a minimum crack
growth rate always seems to occur at about the same Aa, while the model pre-
dicts less delay for more overloads, reaching a limit of no delay at
saturation.

The irregularities which appear in the Residual Force Model curves are
attributed to the selection of the dimension a - a in Equations (36-38). In

p
the computer program developed to generate these predictions, a was updated

p
continuously so that when the plastic zone extent from S exceeded that from

$25 a discontinuity occurred.
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Figure 221 shows a case from Ref. 4 where the crack growth rate vs

distance after load change is plotted for a low-high loading. The plots
begin at the change from AK = 15 ksi 11. to 22.5 ksi /i37 Here, the predic-
tions are based on the same values of a and 1 used for the delayed retardation
cases. Prediction and test agree fairly well.

In order to extend the model to more complex loading cases, an inte-
gration scheme was introduced into the computer program. This method is
similar to that suggested by T.R. Brussat (Ref. 22) and enables rapid calcula-
tion of crack growth for specimens subjected to block loading.

It is assumed that the crack growth per block, da/dB, can be related to
the crack size, a, by the expression:

da n '-= C! a )d (39)

The two parameters, a and 6, must be obtained prior to calculating a vs B.
In its current stage of development, the model requires at least one spectrum
test in addition to constant-amplitude data to evaluate a. and 1.

The evaluation can be made by comparing predicted and experimental
crack growth curves under spectrum loading for various assumed values of a
and 3, and thereby determine the best-fit values of a and 1. It is simpler,
however, to compare predicted and experimental values of crack growth-rate
at a few (at least two) crack lengths, for various assumed values of a. and 1,
and determine the best-fit values of a and 1 in this way.

For example, the crack growth-rate data from a spectrum test are
plotted as in Figure 222. By trial-and-error, values of a and 1 are determined
which, when substituted into the Residual Force Model, result in calculated
values of da/dB that lie close to the test data in the range of interest.
(Two such points are shown by the dark triangles in Figure 222, corresponding
to a = 2.6 and 1 = 0.1.) These calculations require that test data describing
the crack growth behavior of the material under constant amplitude loading
also be available.

The simplifying assumption is then made that the crack growth-rate
curve for the particular loading spectrum being considered can be approximated
by a straight line (see Equation 39) drawn through the two calculated values
of da/dB. The particular straight line shown in Figure 222 is defined by

C' = 1.138 x 10-3 and n' = 2.263 in Equation (39). This crack growth-rate
equation is then easily integrated to give a crack growth equation (a vs B)
which can be directly compared with the test curve.

Comparisons of predicted and experimental curves of a vs B are shown
in Figure 223 for various loading spectra taken from Ref. 23. (The da/dB data
in Figure 222 were obtained from the No.3 test curve in Figure 223.) For all
cases of spectrum loading, the previously determined values of . = 2.6 and $

= 0.1 were assumed to apply. However, the calculated crack growth-rates are
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different for the different loading spectra, so that the values of C' and n'
in Equation (39) vary from spectrum to spectrum. These values are tabulated
in Table 16. The crack growth curves calculated on the basis of these
tabulated values of C' and n' are shown by the dashed lines in Figure 223.
These calculated curves compare favorably with the test curves. Even better
agreement might be possible if various additional factors were considered,
such as finite-width corrections and non-linearity in the observed crack
growth-rate behavior. With regard to the latter, efforts involving more
sophisticated equations (in lieu of Equation 39) produced better approximations
to the actual data in Figures 222 and 223, but all require the program to

daproduce at least three values of d-N" Many of the resulting expressions could

not be integrated in a closed form. As a result, the program retained the
simple form of Equation (39).

During an attempt to predict the data of Reference 24, it was found
that the model would not produce sufficient retardation to fit the data. The
reasons for this are outlined below.

The numerator of Equation (37) represents the effective stress inten-
sity range (AKeff = Kmax - Kr), while the denominator was introduced to nor-

malize the total expression so that constant-amplitude conditions are repre-
sented when appropriate.

The variable S represents the residual stresses distributed behindr.

the crack tip. The dimensions b. and c. define the limits of the distributions1. 1

of S . The value of ot may be varied to increase or decrease K r The residualr. r

stresses are summed over the distance a - r to a, so that K may also be variedY r
by varying the reversed plastic zone size r .

y

In general, increased retardation is obtained by increasing a while
the duration of the retardation is controlled by r . However, the denominator

y
of Equation (37) must always be greater than zero. As a result, it can be seen
that a is limited by the reversed plastic zone size r , and must be less than

some value, max, for a given value of ry

If

a = a - r , (40)r y

then

max (41)
7 - sin ( + 1

2
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The value of a ranges from 1.22 for a r/a 0 to - for a /a = 1. Sincemax rr

the reversed plastic zone size is generally small relative to a, a r/a is

generally smaller than, but close to, unity. As a result, a may usually
max

be fairly large. However, the data of Reference 24 could not be fitted for
0<a< a

max

For cases where the crack growth rate is small, the effective stress
intensity range should be small, and therefore a should be large. However,
as a increases, the denominator of Equation (37) decreases, so that there may
be a limit to the minimum value of Equation (37). In some cases, this minimum
value may not be sufficiently small to yield the proper crack growth rates.
The form of Equation (37) must therefore be modified.

A secondary constraint occurs due to the last term in the denominator
of Equation (37):

1 (a ;- ry ) 2 
(142)

For the simple case of a single cycle of overload, the reversed plastic zone
radius, ry, is set by the overload:

/( •~
ry 2 (Oy (43)

Some data have indicated that the affected crack growth increment over
which transient effects (crack growth rates higher or lower than normal) occur
is not necessarily equal to the theoretical plastic zone radius. Because of
this, the coefficient ý in Equation (43) may be varied to match the observed
affected length and r may be larger or smaller than the plane stress or planey
strain plastic zones.

Substituting Equation (43) into (42):

a - - a a (42a)
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The term

a- 1\•/) a

a

should always be positive and less than 1, or: m

0 < 1 < 1 (44) m

The second limit is trivial and requires that

( 0 (44a)

while the first term requires

1 (44b)

y

The relation between the plastic zone size coefficient, 8, and SOL/cy is
generally not a significant constraint. For cases where the data indicate
that the affected length for transient effects might be several times the
theoretical plastic zone radius, Equation (44b) could be a too-restrictive
constraint.

These constraints suggest that the form of Equation (37) is incorrect.
Alternative forms were considered, but no definitive result was achieved.
Further, this model, in its current form, cannot account for stress ratio or
compressive load effects on subsequent crack growth. Finally, it is currently
necessary to assume the magnitudes and distributions of the residual stresses.
However, new developments in the field of finite element analysis of crack
problems, noteably References 16 and 25, indicate that these difficulties might
be overcome analytically. The possibility of modifying the residual stresses,
because of environmental variations like temperature cycles, appears attractive.
With these considerations in mind, the Residual Force Model retains its basic
appeal.
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5 - SUGGESTIONS FOR FUTURE EFFORTS

A logical result of any program such as this is that new ideas are
germinated. Such was the case for this program. It was found that there
were certain bits of information which would have been desirable, but which
were not included in the test program and which could not be deduced from the
data available. In addition, there are programs which would be logical ex-
tensions of the work reported here. The following is a list of items which
might-be considered for inclusion of future Air Force developmental programs.
The list is not arranged according to any priorities or our consideration of
their importance.

" Investigation of thickness effects on crack growth interaction.
This would consist of an analytical and experimental program to
determine whether thickness affects plastic zone sizes as they

are used for modeling purposes.

"* Experimental program to determine the influence of the number of
overloads on affected crack length and, if applicable, the extent
of that influence.

"* Experimental program to extend the validity of the Crack Closure
Model to aircraft structural materials other than those tested
under the current program. This would entail performing a specific
set of tests to determine the factors required to use the model.
Variable-amplitude tests might be included for verification purposes.

" Analytical and experimental program to extend the Crack Closure
Model to other environments and loading regimes. These might
include'the effect of temperature cycles on crack growth retardation
and the effect of delay time periods where, after an overload, the
crack is maintained at zero or other loads for some specified
period. This program might include some of the concepts of
Reference 11.

"* A program to obtain greater insight into the effects of compression
loading under constant- and variable-amplitude loading conditions
with the objective of updating the crack closure or other models.

"* An analytical program to include crack growth under sustained load-
ing in existing mathematical models.
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9 Further investigations into crack growth for the type of tests
referred to as single periodic overloads. This type of loading
was the only one to escape a reasonable prediction by the model.
Logically, any insight obtained during such an investigation
might reveal similar loading sequences which are not handled
properly by the model.
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6 - OBSERVATIONS AND CONCLUSIONS

This program has provided considerable insight into the phenomenon of
crack growth during a variety of loading sequences. As a result, a variety of
crack growth interaction effects can be predicted with reasonable confidence.
Principal among these are the effects of compression, number of overloads,
overload ratio and crack length affected by an overload or overloads. With _M

the inclusion of the mathematical model developed during this program in the
CRACKS 2 computer program, and through the distribution capability of AFFDL,
it is felt that a large number of organizations will have access to a powerful
predictive tool.

The following conclusions have been reached or verified and quantified
as a direct result of investigations performed during this program:

(1) A stress ratio effect on crack growth rate exists for both
materials investigated.

(2) Crack closure concepts explain a variety of crack growth
interaction effects.

(3) Crack closure levels can be obtained analytically through the
use of crack growth rate data.

(4) The number of overloads which causes maximum retardation is
approximately 13 for 2219-T851 aluminum and approximately 100
for Ti 6A1-4V titanium.

(5) The ratio of the crack closure level after one overload to the
stabilized overload closure level is nominally 0.67 for aluminum
and 0.8 for titanium.

(6) During the application of a number of overloads, the increase
in the closure level is proportional to the number of overloads
applied, up to the saturation (stabilized) closure level for
the overloads.

(7) The crack length affected by the application of one or more
overloads is proportional to the theoretical plastic zone
radius of the overload.

(8) The application of occasional compression or underloads has
negligible effect on subsequent crack growth rates.
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(9) The application of a compression or underload spike preceding an
overload has negligible effect on subsequent crack growth rates.

(10) The application of a compression or underload spike following
one or more overload applications may negate the effect of the
overload on subsequent crack growth rates.

(11) The application of a few cycles of load, where the new minimum
load is less than the preceding minimum load, causes an almost
immediate decrease in the crack closure level.

(12) Under steady-state conditions, the ratio of the closure level to
the maximum applied stress (or load) is a function of the steady-
state stress ratio.

(13) Crack growth retardation is the most significant interaction
effect which occurs during variable amplitude loading.

(14) Acceleration (faster than constant-amplitude growth) can be
classified as a second-order effect.

(15) The data obtained during this program did not reveal whether or
not delayed retardation is a significant consideration for crack
growth interaction effects.

(16) Stable tear, which occurred during high K applications for 2219-
T851 aluminum, masked some interaction effects based on surface
measurements.

(17) The stable tear threshold stress intensities were approximately
30 ksivT-n. and 72 ksiv'Ein. for aluminum and titanium respectively.

(18) Neither the Wheeler nor Effective Stress Retardation models can
account for several crack growth interaction effects.

(19) The crack closure model developed during this program accounts
for:

* Effect of stress ratio, R = Smin/Smax, on constant amplitude
crack growth.

* Effect of maximum overload stress, SOL, on subsequent
retarded growth.

* Effect of previous minimum stress relative to current minimum
stress on subsequent growth.

* Effect of number of overload cycles, NOL on subsequent retarded
growth

* Effect of compression on both constant-amplitude and variable-
amplitude growth.
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Fig. 7 Titanium Specimen with Constant Amplitude Loading
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Fig. 8 Titanium Specimen with Multiple Overloads
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Fig. 9 Titanium Specimen with Single Overloads
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Fig. 10 Aluminum Specimen with Multiple Overloads
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Fig. 12 da/dN vs A K for 2219-T851 Aluminum Constant Amplitude Tests; R=-1
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P = 525 lb

1.6- POL = 656 lb

PMIN = 26 lb

P = 400 lb

SPOL = 500 Ib
1.4 PMIN = 201b
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CYCLE APPLIED
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.- 1v lSPECIMEN:

L) 1.0 - AD-25-11

2219-T851 ALUMINUM
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W = 2.5 IN., t =.25 IN.
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Fig. 19 Crack Length vs. Cycles for Overload Tests; O/L = 1.25, 2219-T851 Aluminum
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Fig. 20 Crack Length vs. Cycles for Overload Tests; O/L - 1.25, 2219-T851 Aluminum
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221A9MT851 ALUMINUM

1.6- CTA

W = 2.5, t =4.25
O/L = 1.4, 1.5

.6 1.
0 10 20 30 40 50 60

CYCLES, THOUSANDS

Fig. 21 Crack Length vs. Cycles for Overload Tests; O/L = 1.4 and 1.5, 2219-T851 Aluminum

SPECIMEN:
AD-25-15
2219-T851 ALUMINUM

1.6- CTA
W =2.51IN., t =.251IN. P = 4001Ib
O/L =1.5 POL = 600Ib•

S1.4 PM IN = 20 1Ib

z 1.2 - INDICATES ONE OVERLOAD
-j CYCLE APPLIED

c• P = 550 Ib
n- • •- POL = 825 lb -

010 PMIN = 27.51Ib

.8--

500 550 600 650

CYCLES, THOUSANDS

Fig. 22 Crack Length vs. Cycles for Overload Tests; O/L =1.5, 2219-T851 Aluminum
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2.0- SPECIMEN:
AG-25-2P
2219-T851 ALUMINUM
CCP
W = 6.0 IN., t = .25 IN.

C6,
H-- INDICATES ONE OVERLOAD

1.0 - CYCLE APPLIEDz 1.0

-J

C-,

) S =10 ksi

SOL = 15 ksi
SMIN = 0.5 ksi

O/L = 1.5

0- 1
300 400

CYCLES, THOUSANDS

Fig. 23 Crack Length vs. Cycles for Overload Tests; O/L = 1.5, 2219-T851 Aluminum

SPECIMEN:
AD-25-7
2219-T851 ALUMINUM

1.6 -- CTA
W =2.5 IN., t =.25 IN.

-- 1.4 4
C6

uJ 1.2 INDICATES ONE OVERLOAD

S1.0- P = 3501Ib

POL = 630 Ib
PMIN = 17.5 lb

O/L = 1.8
.8

I II

1.1 1.2 1.3 1.4 1.5

CYCLES, MILLIONS

Fig. 24 Crack Length vs. Cycles for Overload Tests; O/L = 1.8, 2219-T851 Aluminum
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SPECIMEN:
AG-25-3P

2.0 2219-T851 ALUMINUM
CCP
W = 6.0 IN., t =.25 IN.

S = 10 ksi
SOL = 18 ksi

SMIN = 0.5 ksi
O/L = 1.8

S1.0
z,,, INDICATES ONE OVERLOAD"CYCLE APPLIED

<

o DATA NOT GATHERED
OVER THESE RANGES

.0
800 900

CYCLES, THOUSANDS

Fig. 25 Crack Length vs. Cycles for Overload Tests; O/L = 1.8, 2219-T851 Aluminum

SPECIMEN:
AG-25-6P

2.0 2219-T851 ALUMINUM 12.51
CCP
W = 6.0 IN., t=.25 IN.
O/L = 1.25, 2.1 21

STRESSES AS NOTED 12.51

SMIN 0.5 2I-•0.8 ksi I I 12.5 , 12.51 .,.f
z9 0.6 12.5 i21

w" INDICATES ONE OVERLOADi I/I CYCLE APPLIED
0 IVALUESHOWN IS
<• OVERLOAD MAGNITUDE (ksi)

0
250 300 350 400

CYCLES, THOUSANDS

Fig. 26 Crack Length vs. Cycles for Overload Tests; O/L 1.25 and 2.1, Aluminumi
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1.10-
SPECIMEN:
AD-25-11
2219-T851 ALUMINUM
CTA
W= 2.5 IN., t=.25 IN.

P = 400 Ib /
POL = 500 Ib /

PMIN = 20 Ib
O/L = 1.25 /

1.05 /

z

zuJ
-J

0

1.00

/ INDICATES ONE OVERLOAD
CYCLE APPLIED

DATA

CONSTANT AMPLITUDE

/ CALCULATION

.95-

400 450 500

CYCLES, THOUSANDS
Fig. 32 Crack Length vs. Cycles for Overload Tests; O/L = 1.25, 2219-T851 Aluminum
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A
A

20•
SPECIMEN:

• * AD-25-101

16- A *2219-T851 ALUMINUM

SA * a AT OVERLOAD (IN.)
C-) * 1.094
b 12- A A 1.124

C6 A

8 t * APPLIED ONE CYCLE
OF OVERLOAD.

A O/L =1.25

4 A•

0 0I I I II

0 1 2 3 4 5
CYCLES, THOUSANDS

Fig. 33 Crack Length vs. Cycles, O/L = 1.25

SPECIMEN:
AD-25-1 01

10- 5 TEST 1

A TEST 2
85 TEST 3

8 
A

j 6

£5 A

2-

2 4 6 8 10 12 14 16 18 20

Aa SINCE OVERLOAD, 10-3 IN.

Fig. 34 Instantaneous A a/A N vs. A a after Overload
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12- /SPECIMEN:

AD-25-1 01

w * TEST 1
J 10 TEST 2

10 A TEST 3

z A
co
b 8

6--

w A A A

< A A
_ A

D A *

o A

2

I I I I II I I

0 2 4 6 8 10 12 14 16 18 20

A/a SINCE OVERLOAD, 10-3 IN.

Fig. 35 Cumulative A a/A N vs. A a after Overload

10
SPECIMEN:

AD-25-101

w 0 TEST 1
-J A TEST 28- 

A TEST 3
z
Co 4 AA

* 4

w (4-

w

2

U I I I I I I

0 4 6 8 10 12 14 16 18

Aa SINCE OVERLOAD, 10-3 IN.

Fig. 36 Average A a/A N vs. A a after Overload
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12

A Kbase = 15 ksi (IN)½
104

8- AKpeak 20

Zj Npeak 5

'6-

4,,ý ASSUMED
BEHAVIOR

2-

0 0I
1 10 100 1000

CYCLES AFTER PEAK
a)

10

8

LU
6J

C0

4-

2-

0 I I I

0 100 200 300 400 500 600 700 800

CYCLES AFTER PEAK
b)

Fig. 37 "Typical" Crack Growth After An Overload
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KC

a. Cycles after Peak
Kc

b. Crack growth after Peak
Fig. 38 Variation of Kc after Overload

5000 -

0/

-/

z //

_o
z
LU

X 2500 /
LUtre

/i INCLUDED

"" ~HIGHLY TRANSIENT BEHAVIOR ECUE"- ,,-

0

0 500 1000
CYCLES

Fig. 39 Calculated Crack Growth With and Without Highly Transient Behavior
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1250-

SPECIMEN: AD-25-43

OV ERLOAD CYCLE

1000-

750-
m ~+10 +5 0

CYCLES AFTER +1 +2 +3 +100 +500 +750 +1000

OVERLOAD
0

500-

250- ,
, . t i~ ~ ' '

0
a) MODIFIED DISPLACEMENT VOLTAGE, (ClVd - C2VL)

1250

1000

750
_ CYCLES AFTER -1 +1 +500 1,000 -1 +500 +1000

OVERLOAD

0

500-

2501 I I

0 I I __
MODI FI ED DISPLACEMENT VOLTAGE, (ClVd - C2 VL)b)

Fig. 40 Crack opening Traces, Periodic Overload
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SPECIMEN AD-25-43
2219-T851 ALUMINUM Pmax Pmin CYCLES

CTA, W = 2.5 IN., t =.25 IN. (Ib) (Ib)

1170 33 1
650 33 1000

600
MEASURED CLOSURE LOAD

00
0 0

400 - '0. 0 0 0

00

200 -

01
0 40 80 120 160

CYCLES, THOUSANDS

Fig. 41 Crack Opening Load vs Cycles, Periodic Overload

z

"TS1(R0TEST 2 -PERIODIC OVERLOAD-o TEST 1 (R =0)

w OL =P O/L

R 0

II0

K1 K2 Ak K
STRESS INTENSITY RANGE, AI K, ksiV-

Fig. 42 Periodic Overload and Constant Amplitude Tests
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z TEST 3 (R f0) TEST 1 (R= 0)0 TEST 2 (R=0)

Ld

rr"

0

V

o<

I )

A K3  K1  AK

STRESS INTENSITY, K, ksiA/Th.

Fig. 43 Effect of Stress Ratio Changes

z

-O

'0 R > Rcutoff R =R

uJ
cc

0<•

C- I I
I I

o I

A Kex A K AK

STRESS INTENSITY RANGE, K, ksiV-N.

Fig. 44 Evaluation of Extreme Rate Curve
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A Kth A Keffth

I1 i-Cf0

>:

t
U)
z
w

I--fz

W AKeffth IC,)

Rcutoff STRESS RATIO, R

Fig. 45 Variation of A Kth with Stress Ratio

SPECIMEN: AD-25-45 AD-25-26
O/L =1.25 O/L 1.8

10-5

-J

z
z

"0

I-

0

C-,

10 20 30 40 50

STRESS INTENSITY RANGE, A K, ksiV"i-.

Fig. 46 Periodic Overload Test Comparison
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SPECIMEN:
TG-25-1 0
1Ti 6AI-4V
CT B

1.5 W=2.5, t =.251.5 -

P =1000 lb

POL = 1500 l b
PMIN 75 Ib

•1.3-

(D
z

Uj
.9

INDICATES 1 CYCLE
OF 1500 lb APPLIED

60 80 100 120 140 160 180 200 220

CYCLES, THOUSANDS
Fig. 47 Crack Length vs. Overloads for Single Overloads; O/L =1.5, Ti 6AI-4V Titanium

SPECIMEN:
1.8- TG-25-11

Ti 6A1-4V
CT B

W =2.5, t=.25I1.6-
P = 10001b

OOL =01800 lb
1.PMIN = 751b

1.2-

1.0I INDICATES 1 CYCLEJr OF 1800 lb APPLIED

.81
0 100 200 300

CYCLES, THOUSANDS

Fig. 48 Crack Length vs. Cycles for Single Overloads; O/L = 1.8, Ti 6AI-4V Titanium

134



M U)

<. D

-J NN*N
Ag~

iLi

< U) cU) -

000 Co Q Z
0 Cof)Q

-P - -2

Co

10 14 00 -0 0 10 C, 0 *I0

CCo

Co Q 0 U
a C/3 0

wL 0 >1 zi

V) Cor 0

N0 0
ct 0

0 00
-~ 00c

'N1 'e 'HI9N31 )IOVHO

'35



I.-

IN. Z

0) 0
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0 O/L = 1.5
0l O/L = 1.8

00

104

El- El ElE

Ci

0
103

000

10 20 30 40 50 20 40 60 80 100

(KmaxOL - Kmax), ksi IKmax 0  ksi -VTI N.

Fig. 50 Delay Cycles vs. (KmaxOL - Kmax) and vs. (K maxOL) for OIL = 1.5 and 1.8

'37



1.8 POL P R N

SPECIMEN (Ib) (Ib) (CYCLES)

o TD-25-30 1870 1040 .05 500 O

1.6 0 -37 1440 800 .05 500
+ -28 1440 800 .05 10003 1.4- N 0,/

F- POL-(2'
z

O 1.2

1.0

.8
0 100 200 300 400

CYCLES, THOUSANDS

1.8

1.6

F-

z 1.4
w
-J

n 1.2

1.0

.8 I I I I
0 200 400 600 800

CYCLES, THOUSANDS

Fig. 51 Crack Length vs. Cycles for Single Periodic Overloads, O/L 1.8, Titanium
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10-4 -

EQUATION (c)

USING R = .0278
AND AK= AKOL

w 0
-J

1lO-5-
z 0

00

I--< 0
- 0 0
F- 0 0A

AA0

H 0

So A
o A A

0.
Uj 0S10-6 -

,<
w POL P R N

< SPECIMEN (Ib) (Ib) (CYCLES)

*TD-25-28 1440 800 .05 1000
-30 1870 1040 .05 500

o -37 1440 800 .05 500

10-71 1

20 30 40 50 60 70 80

A KOL, ksii'ifN.

da
Fig. 55 -N-vs. A KOL for Single Periodic Overloads, OIL = 1.8, Titanium
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SPECIMEN:
32 0 AD-25-105

0 SINGLE O/L
28 0 ao =.778 IN.

0 POL = 1170 lb
24 0 Pmax = 650 Ib

0 Pmin = 32.5 Ib

S20 0
Y 0
b 16 0

Cu 0
<1 12 0

0
8 0

0
40

0 [0- L- L L L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ANs, THOUSANDS

a)

SPECIMEN AD-25-105

FIRSTO/LAPPLIED AT: ao=1.051 0 POL = 11701b
ao=1.0 7 6 El Pmax = 650 lb
ao= 1.10 2 A Pmin = 32.51b
ao = 1.202 0
ao = 1.235 C>

SECOND O/L AT Aa = .010SECOND O/L AT Aa = .006
28 0 0

0 El A 0 0
24 0 -l A 0 0

0 El A 0 <2
z 20 0 El A 0 C0.7 El A 0 <2
C16 0 El A 0 0

0 El A 0 0
<112 0 El A 0 0

0 l A o0 0
8 0 El A 0 C

o El A 0 C>
4 El A 0 C>S, El A 0 C>
0 i I I I I I I I i I

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
El 0 1 2 3 4 5 6 7 8 9 10 11 12 13
A 0 1 2 3 4 5 6 7 8 9 10 11 A
0 0 1 2 3 4 5 6 7 0

C> 0 1 2 3 4 5

b) A Ns, THOUSANDS

Fig. 56 Detailed Crack Growth vs. A NS for Single Overload Interactions, 2219-T851
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0 33 x 10-6

12 SPECIMEN:

AD-25-105

10 a = 1.051 - 1.077

O/L SEPARATED BY .006
S8 POL = 1170 lb

P 8max = 650lb 0

"" Pmin = 32.5 lb e.025
oalz 6

170 Ib 1170 lb
OVERLOAD OVERLOAD

2 f - - f t0 2 4 6 8 10 12 14 16 18 20 22

CRACK LENGTH, a, 103 IN.
a)

SPECIMEN:
AD-25-105
a = 1.076 - 1.102

O/L SEPARATED BY .006
10* POL = 1170 lb

- Pmax= 650 lb
6 - Pmin 32.5 lb 0

"1170 lb 1170 Ib
- OVERLOAD OVERLOAD * •

21 - f
0 2 4 6 8 10 12 14 16 18 20 22

CRACK LENGTH, a, 10-3 IN.
b)

34 x 10-5

t 4SPECIMEN:

10- AD-25-105
a= 1.102- 1.124

z 8- O/L SEPARATED BY .06

POL = 1170 lb
6 max= 6501b

Pmin= 32.5 lb
MIZ
. z 11701b 11701b * * *

OVERLOAD OVERLOAD

21 - i i p i
0 2 4 6 8 10 12 14 16 18 20 22c) CRACK LENGTH, a, 10-3 IN.

Fig. 57 Measured Crack Growth Rate vs. Crack Extension for Single Overload Interactions, 2219-T851
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40 SPECIMEN:
AD-25-102

36 FIRST OVERLOAD APPLIED AT: SECOND O/L
ao = .9010 ao = .983 0 ATAa=.006

32 ao = .931] ao = 1.1300 0-
0

28- POL = 11701b 0 0
Z Pmax= 6501b 0 E 0

C) 24 Pmin 32.5 1b 0 El
0 El OK

20 0 El 0
0 El >

16 0 [] 0 0K SECOND O/L
0 El 0 AT ,a =.010

12 0 E0
0 El0 C

8- 0 El 0 0
0 El 04 - 0 El 0 K

0 ElD
LEG END 0 I I I I I I I I I I I I I I

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
El 0 1 2 3 4 5 6 7 8 9 10 11 12 13 El
0 0 1 2 3 4 5 6 7 8 9 0
K 0 1 2 3 4 5 6 7

ANs, THOUSANDS

Fig. 58 Detailed Crack Growth vs. A Ns for Single Periodic Overloads, Aluminum

0

SPECIMEN: El
40_ AD-25-108

ao= .902 0 SINGLE O.L. 0
36- ao= .961 El O/L EVERY 2000 CYCLES

ao= 1.167A RECOVERY A

32- 0
POL = 2000 lb

7; 28 - Pmax 1600 Ib EA

Pmin 1120 lb 0

b 24

<3 20 0E

16 -0A

12 0 A02 AEl

8 0 A

A
4 0

0 ( 1 1t A. I I I I I I I I I I I

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
El 0 1 2 3 4 5 6 7 8 9 10 11 12 13 D
A 0 1 2 3 4 5 6 7 8 9 10 11 A

A Ns, THOUSANDS
Fig. 59 Detailed Crack Growth vs. A Ns for Single Overload Interactions, Aluminum
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1.8

2219-T851 ALUMINUM
SPECIMEN AD-25-12

1.6 -

z CONSTANT AMPLITUDE Ad?
a; R = 0.05

E 1.4 Pmax = 450 lb.
Pmin = 22.5 lb. N 1730

zw
-J

v 1.2
c: • N -880

1.0 0 *e A MULTIPLE OVERLOAD
0 N30BLOCKS OF N CYCLES

N=3020 Pmax = 675 lb.

Pmin = 22.5 lb.

0.8 L L L L
6.50 6.55 6.60 6.65

CYCLES, MILLIONS

Fig. 60 Aluminum, a vs N for Multiple Overloads, R = .05

1.8 2219-T851 ALUMINUM

SPECIMEN AD-25-20 0
1.7

1.6 CONSTANT AMPLITUDE 0
z R = 0.50

4 15 Pmax = 7 0 0 lb.

:- 1.4 Pmin = 350 lb.

z
w-j 1.3-

N 640< 1.2 -

1.1 0 l

1.0 - 0000 o•0 N=1010 A MULTIPLE OVERLOAD

0.9 - BLOCKS OF N CYCLES

0.8 0 • N =1550 Pmax = 1050 lb.
0.8 *Pmin = 350 lb.

0.7 I I I I I I
160 200 240 280 320 360 400

CYCLES, THOUSANDS

a) CRACK LENGTH

Fig. 61 Aluminum, a vs N for Multiple Overloads, R = .50
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1050,1

800J 

S

700 Pmax 700 lb.
0

(a DURING OVERLOAD
A BUMP 1

6008- o BUMP 2
60A A AFTER OVERLOAD

m (ONE BUMP ONLY)

-AJ

0 500

PRIOR TO OVERLOAD A
CLOSURE LOAD AT •

A
400 OR BELOW Pmin A A

A6 A

A~ AAAA A
Pmin= 350 lb. T

300 - REMAINDER OF 7
CLOSURE LOADS

AT OR BELOW Pmin
GAGE 1 GAGE 2
d = 1.178" d = 1.292"

c) OPENING LOAD DETAIL

FOR ONE OVERLOAD BLOCK

1.40

CONSTANT AMPLITUDE
R = 0.50

z 1.30 - 'max = 700 lb.
cc:" Pmin = 350 lb.

w" 1.20-
-i

A A MULTIPLE OVERLOAD BLOCK

OF 1010 CYCLESo 1.10
1.10Pmax = 1050 lb.

Pmin = 350 lb.

1.0 I I I I

300 310 320 330 340 350 360 370

CYCLES, THOUSANDS

b) CRACK LENGTH DETAIL FOR ONE OVERLOAD BLOCK

Fig. 61 (Continued)
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SPECIMEN AD-25-112

.050 -CRACK LENGTH AT O/L = .899 IN.

.050

.040 -

Aa, IN. 0

.030 0
0

0
.020 o) 0 DATA

A ESTIMATED

0 RETURN TO C.A.
0

.010 0

0 AO
0A 0

i I I I II I

4 8 12 16 20 24 28 32

AN, Cycles, Thousands

Fig. 62a A a vs A N Since Multiple Overloads, Aluminum

5

4) (D 0Q 0 (

LU
-J

SA 0

3 0 0000 (z

00

£2 0 DATA

A ESTIMATED
0 RETURN TO C.A.

00

4 8 12 16 20 24 28 32

A N, Cycles, Thousands

da
Fig. 62b N vs A N Since Multiple Overloads, Aluminum
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K0 LmaxI

> ma K KmaxO - KC

U)

UU) 
K0 L

Kmnin

CYCLES
(a)

KOLmaxI

KmaxOL- KC,

KmaxOL -KCI 1

zU)w
HKmaxOL - min

K0 Lmin N K

Kmin-

CYCLES
(b)

Fig. 63 Definition of Effective Stress Intensity Ranges
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0
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1 [KmaxOL- KCII]2

USING - x
21r o y2

12

11 0Z

10-

9-

"' 7- GO

2 6-0

<O

5-

4- ® ®
0

3- 0

2--

1-

0~

0 1 2 3 4 5 6 7 8 9 10 11 12

Aa* CALCULATED, 10-3 IN.

Fig. 68 •a* Measured vs A a* Calculated for A K eff (Rmin)
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TITANIUM SPECIMEN TD-25-21

SCONSTANT AMPLITUDE
1.5 Pmax = 12001b

Pmin = 600 Ib SR =.5 •
1.•4

6 1.3 -

S_,i• •NO 738

S1.2

wU 1.1

.1.001 dJ . A MULTIPLE OVERLOADS

*9 NOL = 5 3 0 OF NOL CYCLES AT
Pmax = 1800 lb
Pmin = 600 lb

.8 O/L = 1.5

250 300 350
CYCLES, THOUSANDS

Fig. 69a Crack Length vs. Cycles for Multiple Overloads, R .50, Titanium

SPECIMEN:

1800 -ITD-25-21 POL = 1800 lbs

1700

1600

1500 GAGE •
GAGE NO. 1 G-AG-- NO. 2

1400 - d0.959" d 1.079" I GAGE NO. 4

1300 d = 1.382"

1200 S Prnax 1200 lbs

0
O 1100 (b LE.J0 LEGEND:

1000 o DURING OVERLOAD

BETWEEN OVERLOADS
900 ATRANSIENT

S STEADY STATE
800 A A

70 S CLOSURE AT A A CLOSURE AT
700 6 lb . AORBELOWPmýý L / ORBELOWPmin

600 min 600 b

250 300 350
CYCLES, THOUSANDS

Fig. 69b Crack Opening Load vs. Cycles for Multiple Overloads, R = .50, Titanium
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1.8 Ti 6AI-4V

SPEC. NO. TD-25-5

1.6 CONST. AMPLITUDE

C6 ~~R = 0.05 O 4,3
I- 1.4 Pmax 650 lb

L9 ~~~Pmin = 32.51lb/ -- --- •o
z
w"j 1.2

/ NO= 27,070

10 MULTIPLE OVERLOAD
No , 26,8 on, BLOCKS OF NOL CYCLES
"OL-26,800 Pmax= 812.5 lb

0,8 Pmin = 32.5 lb
.• I I n n I I

3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

CYCLES, MILLIONS

Fig. 70a Crack Length vs. Cycles, Multiple Overloads, R = .05, Titanium

1.5

;•1.4 0

-- CONST. AMPLITUDE
R = 0.05

13-- Pmax= 650 Ib
Pmin 32.5 lb"' I

-J 1.2

O L = 27,070
1. MULTIPLE OVERLOAD

0 1O1 VBLOCKS OF NOL CYCLES

e Pmax = 812.5 lb
1.0 * Pmin = 32.5 lb

I I I I I I

3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98

Fig. 70b CYCLES, MILLIONS

1000

PmaxOL 821.5 lb •.UPPER BUMP

800- A LOWER BUMP

. Pmax 650 lbI a STEADY STATE

0600 NO CLOSURE,
RECORDS TOO NONLINEAR0

400 *. . . .

"0o GAGE 2

200 d = 1.265"
-GAGE 1 d = 1.145" 0. -0

Pmin 32.5 lb

3.84 3.86 3,88 3.90 3.92 3.94 3.96 3.98

CYCLES, MILLIONS

Fig. 70c
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1.230

SPECIMEN:

TD-25-102

1.220 R =.05

*POL =1350 lb

6 max 900 lb

• 1.210 
Pmin 45 Ib

z
w
-J

0
< 1.200

1.190

NOL =2

1.180 0

142 146 150 154

CYCLES, THOUSANDS

Fig. 71a Crack Length vs. Cycles for Multiple Overloads, NOL = 2, Titanium
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z
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cc 1.130
0

1.120 NOL= *

1.110 I I I
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CYCLES, THOUSANDS

Fig. 71b NOL =5
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I.-

z0Luw
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1.060
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1.050
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CYCLES, THOUSANDS'

Fig. 71c NOL = 10
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I- 1.025 -
zw-U

,• 1.015

1.005

NOL = 20'

.995
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Fig. 71d NOL = 20
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Fig. 71e NOL 50
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Fig. 71f NOL = 100
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Fig. 71g NOL = 2 0 0
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Fig.71h NOL=500
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.750
0 SPECIMEN:

TD-25-115
R R=.3

.740- 500 O/L CYCLES

z POL = 1929 Ib
SPmax= 

1286 lb
* Pmin = 386 lb

H .730
0D
z
UJ

< .7200
C-)

.710-

[--NOL = 500

.700 I I I
100 102 104 106 108 110 112 116

CYCLES, THOUSANDS
Fig. 72a Crack Length vs. Cycles for Multiple Overloads, NOL = 500, Titanium
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z
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S-•1I"*-NO L =200

0
.760
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114 118 122 126 130
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Fig. 72b NOL = 200
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Fig. 72c NOL =100
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Fig. 72d NOL = 50
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Fig. 72g NOL =5
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SPECIMEN:
AD-25-115
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t =.25 IN.

1.6 P = 800 Ib
Pmin = 400 lb

POL = 0,1200 lb 5TH O/L *

1.4 1200 4 L

4T O/LL
1.2 00-*000 1. .04O

z 3R 2ND O/L
U TIME 2DO-j

1.0 T1ST O/L

< 1.0- ~ ~
TY IF so

50 100 150 200
CYCLES, THOUSANDS

Fig. 73 Crack Length Data for Underload/Overload Spike Sequence, 2219-T851 Aluminum

SPECIMEN:
AD-25-116
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t =.25 IN.

1.6 P = 800 lb
Pmin = 400 lb
POL = 1200, 0 lb

Z 1.4 1200 NOL

ci 800
z 00
- 1.2 -J 400'
-j

1.0- NOL = 1 * .

S gO

.8 o

100 150 200

CYCLES, THOUSANDS

Fig. 74 Crack Length Data for Overload/Underload Spike Sequences, 2219-T851 Aluminum
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SPECIMEN:
TD-25-119
Ti 6AI-4V TITANIUM
CTA, W = 2.2 IN., t =.25 IN.

2100

1.2 - 1400

2z 0
J 700 •

0 
001-- 1.0 - 0i i

z 00(.9.

I00000
C- 0

< .8- * 0c 0
00

.6 t

160 170 180 190 200 210 220 230 240

CYCLES, THOUSANDS

Fig. 75 Crack Length Data for Overload/Underload Spike Sequences, Ti 6AI-4V Titanium

SPECIMEN:
TD-25-118
Ti 6AI-4V TITANIUM
CTA, W = 2.2 IN., t = .25 IN.

1.2- 21000

-1400

,1.0 700 3RD O/L.•

w 0 0 0 0S_2ND O/L 0 0 0

0 1ST O/L

.8 
o o• 0 0 0 0 0° °

) 000 00

.61 I I I 1 1 a 1 I

80 90 100 110 120 130 140 150 160

CYCLES, THOUSANDS

Fig. 76 Crack Length Data for Underload/Overload Spike Sequences, Ti 6AI-4V Titanium
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SPECIMEN:
TD-25-117
Ti 6AI-4V TITANIUM
CTA, W = 2.2 IN., t =.25 IN.

2100. - NOL

- 1400.

1.2 o 700.

OL - 10

a: 100 1oO
- 1.0I

z I U1

< 0

C 0 °0

20 30 40 50 60 70 80 90 100

CYCLES, THOUSANDS

Fig. 77 Crack Length Data for Multiple Overload/Underload Spike Sequences, Ti 6AI-4V Titanium

SPECIMEN:
AD-25-117
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t = .25 IN. 1200 NOL

P = 800 Ib 800

Pmin = 400 lb
POL = 1200 Ib <

1.4 0 400
0

1.2 10
3:" 1.2o•°°

z 0

~~1100 010- 1 O0 •g

0 NoL 50<• 0 0 0 0 0O 0 00 '

wI •1 0 0 OS0

.8 I I p

0 10 20 30 40 50 60 70 80

CYCLES, THOUSANDS

Fig. 78 Crack Length Data for Multiple Overload/Underload Spike Sequence, 2219-T851 Aluminum

164



0

0 2 E

00

00

00

00

01

z X, ~
LO0 0

CýC
11)

Zw
<~ 4-0

Z 0>- - N

5:~~co 7 o3 l
Cý S-0

CLu

CI' 0 (

0N 0 0oCDC

W ~0I 0) o0 o0

'N H0 EN- )D H

Oe~d~f 165



cli

_ * 0

0

O 0 N

o 0 *1
*O 6

0ý

LILq

00

C C

LL D 0 o LuU

z 0- 0n 6- U 0 <. E

O - - 0 Lu
0~~c I: * *"

CD LU Cc U) Z 'i -
< U) -j _j a-,-r)-

0 -L m CL 7C)-l
< D UJLLU - (. J

C) C
0cl a d

2s (o z

* - 0)

0 0 00O

Z ) C0 j n

LU m

~ E00

'N I 'e 'HILDN3*bovHo 3

166



SPECIMEN:
AG-25-9P
2219-T851 ALUMINUM
CCP, W = 6 IN., t = .25 IN.

Smax= 10 ksi
R = 0.05

DATA

CONSTANT AMPLITUDE
CALCULATION

1.6- (xx) ONE CYCLE OF
COMPRESSION STRESS OF
MAGNITUDE xx ksi APPLIED
ATZANs =0.

1.4 - (20)

1 .2 -( 
5

1.0 (10

• . • _ • ------- " " •(5)

.8-

.6 I I I I

0 1 2 3 4 5 6

A Ns, THOUSANDS

Fig. 81 a vs. A Ns for Compression Spikes, Aluminum

167



* (N

00

00

00 U

0

0 z

a- * 0

L I

CL

C) U)

o .1
a- (n N o 0 oC

<J 0

a i (n <± z04
<N 0j L .

0 0 <N

0 u~z

0z

LO Z

Loo x
NN

a- E

HZ C) * 0

LU COO CC C-t

NI '

168



SPECIMEN:
AG-25-9P
2219-T851 ALUMINUM
CCP, W= 6. IN., t =.25 IN.

Smax= 10 ksi • DATA
R .05 CONSTANT AMPLITUDE

CALCULATION
(X,Y)TENSILE SPIKE OF

X ksi FOLLOWED BY
COMPRESSIVE SPIKE OF

2.0- Y ksi AT ANs 0

(15, 15)

t 1.8
1--

1.2

a)- 1.N _ T15OUSANDS

Fig. 83 a vs. A Ns for Tension/Compression Spike Sequences, Aluminum
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OVERALL TRACE

o •UNLOADING/LOADING TRACE (TYPICAL)

0-J

CRACK OPENING DISPLACEMENT, COD

Fig. 85 Schematic of Crack Growth Resistance Test

2219-T851 ALUMINUM
60-t =0.25 I N.S60

0 0

i<50
E

z
LU

z ODATA

U)cr 4

0 .02 .04 .06 .08 .10 .12 .14 .16 .20

CRACK GROWTH INCREMENT,/Aa, IN.

Fig. 86 Crack Growth Resistance Curve for 2219-T851 Aluminum
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a 0 TUNNELING DURING OVERLOAD

SPECIMEN
PROPAGATION THICKNESS

DIRECTION (.25 IN. NOM.)

CRACK FRONT: BEFORE OVERLOAD
AFTER OVERLOAD

Fig. 87 Schematic of Crack Front Tunneling

/
/

p

g o-' 100
S.90 2

z-
w

0a ASSUMEDo ~< ,
<o HALF CRACK LENGTH AT
cc .0o MID-THICKNESS - O

SOSURFACE LENGTH
"" ~(MEASURED)

.85- T 0 0 0 0 00000000

TUNNELING DURING OVERLOAD, at

I I I I I I I I I I I
325 330 335

CYCLES, THOUSANDS

Fig. 88 Assumed Crack Front Behavior After Tunneling

173



2219-T851 CCP

a AT OVERLOAD = .852 INCH

KmaxOL = 36.3 ksi IN.

1.0 S = 10 ksi
UcSOL =21 ksi
c- LU\ Samin= 0.5 ksi

SrO

.05 .10

CRACK GROWTH INCREMENT
AFTER OVERLOAD, IN.

Fig. 89 Normalized Crack Growth Rate vs
Crack Growth Increment After Overload

Ti 6AI-4V TITANIUM

t =0.25 IN.

>- 80---

Uzi 70"
Z

U- 60

HE 0 DATA
ulV 50

0 .02 .04 .06 .08 .10 .12 .14

CRACK GROWTH INCREMENT, Aa, IN.

Fig. 90 Crack Growth Resistance Curve

for Ti 6AI-4V Titanium
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NOL=100 N=1000
O/L = 1.5

1.200- t = .25 IN., SPECIMEN TD-25-50 POL = 1350 lb.
t = .75 IN., SPECIMEN TD-75-1 POL = 4,050 lb.

1.100 -

a, IN.

1.000 0

* $

.900-10

.800 - i i i F
0 10 20 30 40 50 60 70 80

A CYCLES, A N, THOUSANDS

Fig. 91 a vs A N for Multiple Periodic Overloads for Two Thicknesses

1 .2 l 0 l 0 ,

0

l SPECIMEN TD-25-102

1.1 20 t=.250 W=2.2991N.

0 5 O/L= 1.5
Xlw•.oo POL 1 3 5 0 lb., Pmax =900 lb.,

TD-75-2 0• R =.051.0 l~*1 O .0tl 10

1 j SPECIMEN TD-75-2

a, IN. 2 0 t= .75
mo 100 0 r- W = 2.496 IN.

.9- 08 0 O 5•750 O/L= 1.5
-0 . J 100 TD-25-102 POL 4 0 5 0 lb., Pmax = 2700 Ib.,

S1 5~0 4¶100 R = .05
8 2K 50 200

* 2K

.7-

SPECIMEN:

TD-75-2 180 220 260 300 340

TD-25-10240 80 120 160 2b0

CYCLES, THOUSANDS
Fig. 92 Effect of Multiple Overloads for Two Thicknesses
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DATA: *SPECIMEN TD-25-106 A SPECIMEN TD-75-3

1.3 O/L =1.8 O/L =1.8

POL =1620 LB POL =4860 LB

Pmax =900 LB Pmax =2700 LB

1.2 Pmin 45 LB Pmin 135 LB

t = .250 IN. t =.749 IN.

W =2.200 IN. W =2.497 IN. A

1.1 oe

z gA

1.0 •

SLOPES MATCH 
A

A

.9 t=%IN.

1st O.L. -. t =¼IN.

.8 [AA A 
A

0 4th

*A

7 00 3rd

A 2nd

A 1st OVERLOAD

SPECIMEN : I I I I I I I I I

25-106 80 90 100 110 120 130 140 150 160 170 180 190

75-3 150 160 170 180 190 200 210 220 230 240 250 260

CYCLES, THOUSANDS

Fig. 93 Comparison of Crack Growth Rates for Two Thicknesses, 1st Overload

1.3

1.2

000
*A

1.1 
A

*A

1.0-
2:oo° A

.9- AAA S

2nd OVERLOAD *
.8 -

0 
A

.7 •c oJ

"Aso 2nd OVERLOAD

.6 I I 1 I I 1 I 1 1 I

25-106: 90 100 110 120 130 140 150 160 170 180 190

SPECIMEN: 75-3: 210 220 230 240 250 260

CYCLES, THOUSANDS

Fig. 94 (Continued Fig. 93 2nd Overload)
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1.3-

SPECIMEN TD-25-106:*

1.2 TD-75-3: A

11 .1

• 1.0 -z r e
A AAA

.9 3rd OVERLOAD 0
.0

.8-

S3rd OVERLOAD

.6 I I I I I I I I
TD-25-106: 90 100 110 120 ' 130 ' 140 150 160 ' 170 180 190

TD-75-3: 240 250 260 270 280

CYCLES, THOUSANDS

Fig. 95 (Continued from Fig. 94) 3rd Overload

1.3

SPECIMEN TD-25-106: e 0

1.2 TD-75-3: A 0

603

1.1 AAA' •
4th OVERLOAD

- 1.0 - e[I

.9

,8 *0• 4th OVERLOAD
.8

.7 oe. 01

.6 I I II I I I III

TD-25-106: 90 100 110 120 130 140 150 160 170 180 190
TD-75-3: 280 290 300 310 320

CYCLES, THOUSANDS

Fig. 96 (Continued from Fig. 95) 4th Overload
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SPECIMEN: EB WELDED Ti 6AI-4V TITANIUM

CYCLES
Smax PER

-ý .8 (ksi) BLOCK 
2

9.4 2860 

V

="18.7 1240 0 ~c4
8 .0 

1 IN C H

F- 28.0 497
u 6 37.4 141 

0 a/c= IL-4"-J 46.7 30o 56.3 1

C.)•0
.0 DATA

00LL

EFFECTIVE STRESS MODEL PREDICTION

00 10020304 
0BLOCKS 

400Fig. 97 Comparison of Data and Prediction Using Effective Stress Model

EFFECTIVE STRESS

RANGE, Z Seff

w RCRACK CLOSUREU) 
STRESS

\ /

TIME

a) TIP OPEN 
b) TIP CLOSED

Fig. 98 Schematic of Crack Closure
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1.0-

Cf= Kc
Kmax

EQ 20

Cfo = .23 0.5

-05

•""•'--• • "Kmin=R

Kmax

__ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _I

-1. -.5 0 .5 1.0
R

Fig. 99 Closure Factor vs R for 2219-T851 Aluminum

1.0

.8

EQ 20
Cfo = 0.40

.6 //Cf 0 .23

Cf

4 MEASURED
DATA RANGE

Kmin
Kmax =R

0 I 1 1
0 .2 .4 .6 .8 1.0

R

Fig. 100 Comparison of Closure Factor with Data for 2219-T851 Aluminum
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1.0-/

Cf K _ /
Kmax

EQ 21

Kmax

-1. -.5 0 .5

b) TI-6AL-4V TITANIUM R

1.0 /
/

Kc

_ Kmax

EQ 20 /S~Cfo -=o0.4400-

Kmax

I III

-1. -.5 0 .5
R

a) 2219-T851 ALUMINUM
Fig. 101 Modified Closure Factor vs R

$) o~ca,, i iSc

U)

U)

Sc2

P CYCLES, N,
-A a CRACK LENGTH, a

Fig. 102 Schematic of Closure Variation through Effected Length caused by Overload
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CONSTANT AMPLITUDE CRACK GROWTH
RATE (CALCULATED)

z __

I-

MEASURED CRACK
0 GROWTH RATE

0p p
2

Aa AFTER LOAD CHANGE

Fig. 103 Schematic of da/dN vs Aa After an Overload

/

) PLOT CONSTANT AMPLITUDE /
GROWTHTO ESTIMATE p

- /s
w•-/

° /
0
U--

-r•LI.

/ p
Aa / (ESTIMATED)

1 MODIFY Cf UNTIL INITIAL SLOPE AGREES

ANs

Fig. 104 Schematic of Iteration Procedure to Obtain Cfo
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1.06- NOL = 20/ SPECIMEN: AD-25-107
N*2219-T851 ALUMINUM

1 0 CTA, W = 2.5 IN., t =.25 IN.

* 7
1.04- • 0 DATA

0 PREDICTION

USING CRACK
- "CLOSURE MODEL

1.02 
Cfo =.40

0/
NOL 50

1.00-

0/
0/

.98 -

f .96
HN

o I/ 1 P = 650 lb.
.- 6 POL= 1170 b.

/ * Pmin = 3 2 lb.

S

.92 -

.90 /.
NOL 500 /

/.

.881

"80 4 8 12 16 20

Z•Ns, CYCLES SINCE LOAD CHANGE, THOUSANDS

Fig. 105 Comparison of Predictions with Data for High-Low Sequence, 2219-T851 Aluminum, O/L =1.8
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SP

SPECIMEN: AD-25-109 POL S

.94 2219-T851 ALUMINIM • A Ns
CTA, W =2.5 IN., t =.25 IN. P = 550 lb.

POL= 825 lb.

Pmin= 28 lb.

0 DATA
z ~~-PREDICTION 0

S.92 USING CRACK

CLOSURE MODEL

Cfo =.40
LU
-j

.90 NOL ' o 00
cc

.88I I I I I2 4 6 8 10 12

A Ns, THOUSANDS

Fig. 106 Comparison of Prediction with Data for High-Low Sequence,
2219-T851 Aluminum, O/L = 1.5

1.2- SPECIMEN: AG-25-12 P 500 lb.

2219-T851 ALUMINUM P POL= 800 lb.

CTB, W =2.5 IN., t =.25 IN. , Pmin = 25 lb.

z 0

H . NOL~-O
w 0

- 0 DATA
O• PREDICTION

1.0 I

0 10 20 30 40 50

A Ns, THOUSANDS

Fig. 107 Comparison of Prediction with Data for High-Low Sequence,
2219-T851 Aluminum, O/L = 1.6
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SPECIMEN
TG-25-2P
Ti 6AI-4V
CCP, W = 6 IN, t = .25

1.4 NOL= 0 DATA

S = 6 ksi - PREDICTION

SOL = 10ksi USING CRACK

Smin 0.3 ksi CLOSURE MODEL

1.2 O/L = 1.67

1.0 * " -0

a
(IN) 7,

.8 0

NOL= 0

.6S = 10ksi

SOL 16 ksi

•-- Smin = 0.5 ksi
O/L = 1.60

.4I I I
0 40 80 120 160 200

A NS (THOUSANDS)

Fig. 110 Comparison of Predictions with Data for High-Low Sequence, Ti 6AI-4V Titanium
O/L = 1.6, 1.67
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STRESS

SEQUENCE A SEQUENCE B

A~ ANs CYCLES, N N

SEQUENCE A

SEQUENCE B

k 0 ANS

Fig. 111 Effect of Two Different Load Histories on Subsequent Crack Growth
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SPECIMEN: AG-25-1P
2219-T851 ALUMINUM

6 ksi

6.0-

-4.13.54

S3 4 5 6 7 8 9 10 11 ---- CYCLE NO. 4 t 4 ft
R = 0.05

COD

Fig. 112 Load vs COD Sequence for Two Stress Ratios, R = .5/.05

SPECIMEN: AG-25-1P
2219-T851 ALUMINUM

1 23
R = 0.7

Smax = 6 ksi
2c = 5.0 IN.

"T 7-" 6 - CYCLE NO.4 5

R = .05
COD

Fig. 113 Load vs COD Sequence for Two Stress Ratios, R = .7/.05
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STRESS

S1 --- _ _

SS

mm 1 l

mS2
Smin, SI P I• c2

Smin2I

CYCLES, N

Fig. 114 Schematic of Minimum Stress Adjustment

CURRENT LOADING: P=951 lb., R =0

LOADING PRIOR TO A NS =0: P=951 1b., R=0.7

SPECIMEN: AG-25-29
2219-T851 ALUMINUM 0

1.0CTB (W 2.5 IN., t = .25 IN.)

0
z .9-
LU
-J

0 CONSTANT AMPLITUDE

.8- •CALCULATION

0 DATA

.7 1 1 i 1
0 8 12 16 20

Ns, THOUSANDS

Fig. 115 Comparison of Constant Amplitude Calculation with
Data For Minimum Stress Variation
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SPECIMEN: AG-25-30
2219-T851 ALUMINUM
CTB (W = 2.5 IN., t =.25 IN.)

1.3 CURRENT LOADING: P = 951 lb., R = 0.3

LOADING PRIOR TO AN =0: P 91l. .

F- 1.23
z

w-J CONSTANT AMPLITUDE
le" 0 CALCULATION
C.)

1.1 0 DATA

SI I

0 2 4 6 8
A Ns' THOUSANDS

Fig. 116 Comparison of Constant Amplitude Calculation with Data for Minimum Stress Variation

STRESS

S2

Sc2

Scl i_..

0 NSAT CYCLES

NOL

Fig. 117 Schematic of Variation of Closure Stress with Number of Overload Cycles
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Aas CRACK LENGTH
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0

Cr
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SPECIMEN:
AD-25-11
2219-T851 ALUMINUM P = 525 lb
CTA, W = 2.5 IN., t =.25 IN. = 6561.6 O/L = 1.25 POL =65 Ib•

Pmin = 26 lb

P = 400 Ib

•'--- POL = 500 lb
z 1.4 Pmin = 20 lb

C6
I-

INDICATES ONE OVERLOADz 1.2-u CYCLE APPLIED
-J

0

SDATA
- - CONSTANT AMPLITUDE CALCULATION

.8

400 450 500 550
CYCLES, THOUSANDS

Fig. 119 Comparison of Constant Amplitude Calculation with Data, O/L 1.25, Aluminum

SPECIMEN:
AG-25-1 2
2219-T851 ALUMINUM INDICATES 1 CYCLE
CTB, W = 2.5, t =.25 OF POL APPLIED

1.6 O/L = 1.25

-.- -o--P=9501b,R=.01

1.4 P = 8001b P = 5001b
" PO L = 1000 lb =POL = 625 lb

C6 Pmin = 401b Pmin = 25 lb

I-

z 1.2
-j

c 1.0

DATA
.8 CONSTANT AMPLITUDE CALCULATION

.6 II I I I I I
0 20 40 60 80 100 120 140 160

CYCLES, THOUSANDS
Fig. 120 Comparison of Constant Amplitude Calculation with Data, O/L = 1.25, Aluminum
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SPECIMEN:
AG-25-11
2219-T851 ALUMINUM

1.6 CTB, W = 2.5, t =.25 J
INDICATES 1 CYCLE

P = 1000 lb P = 7501b OFPOLAPPLIED

1.4 - OL =1500 lb POL = 1050 lb
Pmin = 50 Ib- b Pmin = 40 lb

-O/L = 1.5 O/L= 1.4

1.2L•P = 950 Ib
zu Pmin = 50 Ib
-J

< 1.0

.8 . DATA

CONSTANT AMPLITUDE CALCULATION

0 10 20 30 40 50 60

CYCLES, THOUSANDS
Fig. 121 Comparison of Constant Amplitude Calculation with Data, O/L = 1.4, 1.5, Aluminum

1.6 SPECIMEN:
AD-25-1 5 P = 400 lb

CTA, W=2.5 IN.,t=.25 IN. Pmin = 201b

. 1.4 O/L =1.5

Z 1.2 INDICATES ONE OVERLOAD
-J CYCLE APPLIED
v

< , _5--•P = 5501Ib
L) 1.0 PO• ' -- P L = 825 1b _

Pmin = 27.5 lb

DATA
.8 CONSTANT AMPLITUDE CALCULATION

500 550 600 650

CYCLES, THOUSANDS

Fig. 122 Comparison of Constant Amplitude Calculation with Data, O/L = 1.5, Aluminum
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2.0

SPECIMEN: I
AG-25-2P
2219-T851 ALUMINUM
CCP, W= 6.0 IN, t=.25 IN.

f/6 S = 10 ksi
INDICATES ONE OVERLOAD SOL = 15ksi

U CYCLE APPLIED /min = 0.5 ksiuz 1.0 Smn= 0. s

O/L = 1.5
0

__ DATA
- CONSTANT AMPLITUDE CALCULATION

300 400

CYCLES, THOUSANDS

Fig. 123 Comparison of Constant Amplitude Calculation with Data, O/L = 1.5, Aluminum

2.2 2219-T851 ALUMINUM

): NUMBER OF DATA POINTS

2.0 Sc AFTER NOL = 1
1= Sc AFTER NOL = NSAT

0

_j 1.8/
,i41) E)(2)QW 1.6 / , ,(1)2

On"

> //

w /2
0

u.i

Er 1.6

-J

0

/

L ) 1.4 (•12 2/3)17

0 I I I i I

1.0 1.2 1.4 1.6 1.8 2.0

OVERLOAD RATIO, O/L

Fig. 124 Calculated Closure Stress After One Overload over Previous Closure Stress vs Overload Ratio
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1.8 - G 2219-T851 ALUMINUM

1.6 -

Rc 1.4- O/L= 1.8

1.2

3 POINTS

1.0 . I I I I
0 4 8 12 16 20

NO/L

Fig. 125 Rc vs NOL for O/L = 1.8 2219-T851 Aluminum

1.0 - 2219-T851 ALUMINUM

NSAT
.9- 0] 0

7 'A

.8 00 0

O/L
01.5
0 1.8

.7 0A2.1

(9)

NUMBER OF DATA POINTS

.6-

0 4 8 12 16 20

NOL

Fig. 126 Factor -y vs NOL for 2219-T851 Aluminum
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1.2

1.0 (8) 0 0 0 0(2)
(12) (2)

0 0

OVERLOAD
c 0 RATIO

.8 031.5
A1.6, 1.67
01.8

)NO. OF DATA POINTS

.6 RANGE OF DATA

0100 200 300 400 500 2000

NUMBER OF OVERLOADS, NOL

Fig. 127 Factor y vs NOL for Ti 6AI-4V Titanium

.4

01

STRESS RATIO, R

Fig. 128 Crack Tip Crushing vs. Stress Ratio, R
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TENSION

Stain 1  - $1____ 2

W S,

0 
CYCLES

Smin2

COMPRESSION

Fig. 129 Schematic of Closure Adjustment for Compression Stresses

TENSION

Co Sc-

SI'

Co
wU) Sc'
U)

Smin
1

S2

0 
•

CYCLES

Fig. 130 Schematic of Closure Adjustment for Underload Spike

TENSION

$1

Sc

Sc' -
Co
U)w
c 0- 

CYCLESCn Sminl

$2ý

COMPRESSION

Fig. 131 Schematic of Closure Adjustment for Compression Spike
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STRESS

Sp

pS

SCl 
EQ 22, 22a

AFFECTED LENGTH,

ao ap CRACK

as LENGTH

Fig. 134 Schematic of Closure Behavior for High-Low Loading Sequence - Definition of Terms
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2.0- SPECIMEN: /
AG-25-1P /
2219-T851 ALUMINUM /
CCP, W = 6.0 IN., t =.25 IN. /

1.9- / 0

/
S = 6 ksi

C6 R = 0.5
I1.8 CONSTANT AMPLITUDE

LU 10V
- 0

L 1.7-<
o ool

1.6- ~ DATA
PREDUCTION

1.5q

500 520 540 560 580

CYCLES, THOUSANDS

Fig. 137 Predicted a vs. N for R = 0.5, 2219-T851 Aluminum

1.1 SPECIMEN:
AG-25-29 0
2219-T851 ALUMINUM
CTB, W = 2.5 IN., t =.25 IN. S

S1.0e -

"c" P = 951 Ib
SR = 0.0

(D CONSTANT AMPLITUDE

.Z .9.

8• . 0 DATA
--- PREDICTION

.7 I I I I I I I I I I
200 205 210 215

CYCLES, THOUSANDS

Fig. 138 Predicted a vs. N for R = 0., 2219-T851 Aluminum
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SPECIMEN:
AG-25-7P
2219-T851 ALUMINUM
CCP, W = 6.0 IN., t =.25 IN.

2.0 S =6 ksi /0

R =-1

/0

• 1.5 -

I- /0
0z

-j

<o0 1.0-

--- 0

•.5 - "- .--- 0""0" 0 DATAPREDICTION

450 500 550 600

CYCLES, THOUSANDS

Fig. 139 Predicted a vs. N for R =-1, 2219-T851 Aluminum

SPECIMEN:
TD-25-17
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t = .25 IN.

P = 1000 Ib 00
R = 0.5 0
CONSTANT AMPLITUDE 00 .

.c" 1.1 0-

0S01-

z 0

o 01.0 0 DATA
S100 - -- PREDICTION

0

.90 1 I I I I I

140 160 180 200 220 240 260

CYCLES, THOUSANDS

Fig. 140 Predicted a vs. N for R = 0.5, Ti 6AI-4V Titanium
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SPECIMEN:
TG-25-06
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t = .25

CONSTANT AMPLITUDE
1.9 P = 700 lb

R = 0.3

-I

,(1.

600 700 800 900

CYCLES, THOUSANDS
Fig. 141 Predicted a vs. N for R 0.3, Ti 6AI-4V Titanium

1.6- SPECIMEN:
TG-25-02 /

-- Z ~Ti 6AI-4V TITANIUM//eTA, W = 2.5, t =.25D

1.4
O ~CONSTANT AMPLITUDE,,z P = 11001b/

-j R = 0.05 -
C) ~~PREDICTION-,,

<• 1.2-

c:

1.3

.81

180 200 220 240 260 280 300 320 340

CYCLES, THOUSANDS

Fig. 142 Predicted a vs. N for R = 0.05, Ti 6AI-4V Titanium
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SPECIMEN:
TG-25-5P
Ti 6AI-4V TITANIUM
CCP, W = 6.0 IN., t =.25_I . /

1.5 S= 10 ksi 0 /
R =-1
CONSTANT AMPLITUDE -

I 0-

_ 1.0 *

.0<0

.5 - - DATA
- -PREDICTION

.- - CALCULATED FROM
EQUATION 3

0750 800 850 900

CYCLES, THOUSANDS

Fig. 143 Predicted a vs. N for R = -1, Ti 6AI-4V Titanium

SPECIMEN:
AD-25-11
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t =.25 IN. P = 525 Ib

1.6 O/L= 1.25 POL = 656 lb
Pmin = 26 Ib

P = 400Ib /
POL = 500 lb

; 1.4 Pmin = 20Ib /

ONE OVROAD--

Z 1.2- CYCLE APPLIED

DATA
PREDICTION

.8 

I ,
400 450 500 550

CYCLES, THOUSANDS

Fig. 144 Predicted a vs. N for O/L = 1.25, 2219-T851 Aluminum, Single Overload
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SPECIMEN:
AD-25-15

1.6 2219-T851 ALUMINUM
CTA, W=2.5 IN.,t=.25 IN. P = 400 lb
O/L = 1.5 • POL = 600 Ib-

Pmin= 20 lb
_z 1.4 /

F-
C9 INDICATES ONE OVERLOAD
wZ1. CYCLE APPLIED-J

< 5 P = 550 Ib

A10 POL = 825 Ib -

S 1.4 5 0 = - /s

Pmin m 27.5 Ib

SDATA
.8 • •PREDICTION

I-I A

500 550 600 650
CYCLES, THOUSANDS

Fig. 145 Predicted a vs. N for O/L =1.5, Single Overload, 2219-T851 Aluminum

1.8- SPECIMEN:
AG-25-2P I

1.6 - CCP, W =6. IN., t =.25 IN. /

S = 1,8

.6min O 5 VER STARTING AT

M-~~~ 1.2 29000 CYCLE500CYLE

1.4-

.- /a:: INDICATES (1) CYCLEOF OVERLOAD,,PPLEo\, '00.,,.
.6- • / iSTAR TI N GAT

!Y _i"290000 CYCLES

DATA
.2- PREDICTION

0 290 300 320 340 360 380 400
CYCLES, THOUSANDS

Fig. 146 Predicted a vs. N for O/L = 1.5, Single Overloads, 2219-T851 Aluminum Panel
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SPECIMEN:

1.6 AD-25-7
2219-T851 ALUMINUM
CTA, W= 2.5 IN., t=.25 IN.

P = 350 Ib

1.4 POL = 630 lb
Pmin= 17.5 lb
O/L = 1.8

INDICATES ONE OVERLOAD

Z 1.2- CYCLE APPLIED

f-J

0 1.0--

DATA
PREDICTION

.8 i
1.1 1.2 1.3 1.4 1.5

CYCLES, MILLIONS

Fig. 147 Predicted a vs. N for O/L = 1.8, Single Overloads, 2219-T851 Aluminum

2.0-

1.8 SPECIMEN:
AG-25-3P
CCP, W = 6. IN., t = .25 IN.

1.6 S = 10ksi 4/

SOL = 18ksi

zý 1.4 
Sm in =.5 ksi

-O/L = 1.8*

F- 1.2 ××

z *w

J 1.0
Sxx/

0 .8 INDICATES (1) CYCLE

OF OVERLOAD 'PeE ,DITIO
.6 APPLIED PREDICTION

.- * STABLE TEAR INCLUDED
IN CALCULATIONS

+++++ DATA NOT GATHERED IN
.4- THESE RANGES

.2 f I
810 850 900 950

CYCLES, THOUSANDS

Fig. 148 Predicted a vs. N for O/L = 1.8, Single Overloads, 2219-T851 Aluminum Panel
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SPECIMEN:
TD-25-13
Ti 6AI-4V TITANIUM

1.6 CTA, W = 2.5 IN., t =.25 IN. 0

SO/L =1.25

S1.4
•_ o /

z ONE CYCLE OF 0 7
w OVERLOAD APPLI ED -"" 0 O DATA
S1.2- O -P PREDICTION

0

1.0 1 P = 700 lb P = 850 lb
POL = 875 lb POL = 1063 lb
Pmin = 35 lb Pmin = 43 lb

.8 1

1.20 1.25 1.30

CYCLES, MILLIONS

Fig. 149 Predicted a vs. N for O/L 1.25, Single Overloads, Ti 6AI-4V Titanium

SPECIMEN:
1.7 - TG-25-10

Ti 6AI-4V TITANIUM I
CTA, W = 2.5, t =.25

1.5 - oP = 1000 lb PREDICTION -,-/

1. min = 75 Ib
SIIO/L= 1.5
•- 1.3

z
w-J

S 1.1DATA

INDICATES 1 CYCLE
OF 1500 Ib APPLIED

.7 1 1 1

60 80 100 120 140 160 180 200 220

CYCLES, THOUSANDS

Fig. 150 Predicted a vs. N for O/L = 1.5, Single Overloads, Ti 6AI-4V Titanium
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SPECIMEN:
TD-25-16

1.6 Ti 6AI-4V TITANIUM 0

CTA, W = 2.5 IN., t = .25 IN.

O/L = 1.50

ci1.4 00

SINDICATES ONE CYCLE OF 0
OVERLOAD APPLIED 0z

w 0"- 1.2- 0
o° 0 ° oDATA

< 00- PREDICTION

000000
1.0 0 0

O--oO2 P = 6001b P = 8001b

POL = 900 lb POL = 1200 Ib
Pmin = 30 lb Pmin = 40 Ib

.8 1 _ _ _ _ _ _ _ _1
1.8 1.9 2.0

CYCLES, MILLIONS

Fig. 151 Predicted a vs. N for O/L = 1.5, Single Overloads, Ti 6AI-4V Titanium

SPECIMEN:

1.8 - TG-25-11Ti 6AI-4V TITANIUM
CTA, W =2.5, t=.25 I~,-PREDICTION

P = 1000 lb DATA
1.6 POL = 1800 lb

Pmin = 75Ib I
O/L= 1.8

1.4 /
-J

o= 1.2 /

1.0, INDICATES 1 CYCLE

OF 1800 Ib APPLIED

8I I

0 100 200 300

CYCLES, THOUSANDS
Fig. 152 Predicted a vs. N for O/L = 1.8, Single Overloads, Ti 6AI-4V Titanium
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SPECIMEN:
TD-25-2
Ti 6AI-4V TITANIUM /

1.4 - C T A , W = 2 .5 IN ., t= .2 5 IN ,.N I A E O E C C E O

SP = 5501b OVERLOAD APPLIED

"¶"1.2 POL = 990 Ib
P 28 lb 110• "Pmin = 28I 

• •

O/L = 1.8 •o

LU 0

•1.0 •
< 0c 00 0 0 DATA
i: --- PREDICTIONL)

.8 I I I I I III
0 .1 .2 .3 .4 .5 .6 .7 .8

CYCLES, MILLIONS

Fig. 153 Predicted a vs. N for O/L = 1.8, Single Overloads, Ti 6AI-4V Titanium

SINGLE PERIODIC OVERLOAD
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t = .25 IN.

SPECIMEN:
AD-25- AD-25-26 AD-25-38

26 38 S

1.6 P (Ib) 600 500

POL (Ib) 1080 900

Pmin (Ib) 30 25

1.4-
O/L = 1.8 o•l

A A
N 50

1.2-- NH- AD
.J A A *,A DATA

,y y••~j •• --A PREDICTION

M1.0- A AD-25-26. -.S°A A AAA----

;_..- _. --- -AD-25-38

.81
0 100 200 300 400

CYCLES, THOUSANDS

Fig. 154 Predicted a vs. N for O/L = 1.8, N = 500, Single Periodic Overloads, 2219-T851 Aluminum
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SINGLE PERIODIC OVERLOAD
SPECIMEN AD-25-43
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t =.25 IN.

P = 650 Ib
POL = 1 1701b 

0 DATA1.4 Pmin = 33 lb - PREDICTION
O/L = 1.8

N = 1000 CYCLES

ce N

S1.0 0 0
c &A

8L
0 501100

CYCLES, THOUSANDS 150
Fig. 155 Predicted a vs. N for O/L = 1.8, N = 1000, Single Periodic Overloads, 2219-T851 Aluminum

SINGLE PERIODIC OVERLOAD
2219-T851 ALUMINUMCTA, W = 2.5 IN., t = .25 IN. 

SPECIMEN: AD-25-45 AD-25-29
A

1.6 P = 500 Ib 
A 0

POL = 625 lb A
P m in = 2 5 1b AD T AA
O/L = 1.25 DATA A

-1.4 N = 50 - PREDICTION

N0

0

00A/K
< A00

0 , *0 PREDICTION
-. • ,(BOTH SPECIMENS)

1.0 
- -A50 

100 *A__
CYCLES, THOUSANDS 

150

Fig. 156 Predicted a vs. N for O/L = 1.25, N = 50, Single Periodic Overloads, 2 219-T851 Aluminum

209



SINGLE PERIODIC OVERLOAD
SPECIMEN AD-25-27
2219-T851 ALUMINUM

SP = 550 lb
POL = 688 lb

Pmin= 281b
SO/L = 1.25

1.4 N = 100 CYCLES

z

1.2 -

0 0o DATA

1.0 - PREDICTION

.8 I I I I I I I
0 10 20 30 40 50 60 70 80

CYCLES, THOUSANDS

Fig. 157 Predicted a vs. N for O/L = 1.25, N = 100, Single Periodic Overloads, 2219-T851 Aluminum

SINGLE PERIODIC OVERLOAD
Ti 6AI-4V TITANIUM SPECIMEN:
CTA, W = 2.5 IN., t =.25 IN. TD-25-30

_ _ _ _1 8______ TD-25- I S e

1.6 - 30 37 T23 37
P (Ib) 1040 1050 TD-2D353/

z PoL(,b) 1870 1890 / / D- 2-

ea 1.4 - Pmin (Ib) 52 I / / 5
N 500 500 /

I- 00I N 000
,- /"- TD-25-37

1.2 ,,,nn•nr

0 0

1.0 0 o A 0 0 DATA
|•0 / 0 • PREDICTION

.8 I

0 100 200 300 400

CYCLES, THOUSANDS

Fig. 158 Predicted a vs. N for O/L = 1.8, N = 500, Single Periodic Overloads, Ti 6AI-4V Titanium
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SINGLE PERIODIC OVERLOAD
SPECIMEN TD-25-28
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t =.25 IN.

1.6 - P = 1040 Ib

POL = 1870 Ib
Pmin= 52lb
O/L = 1.8

z1.4 N = 1000 CYCLES

z" 1. -- N •LI--

I- / •* ~ 0o *

/cc DATA
01.0 / 

-- PREDICTION

.8 I
0 100 200 300 400

CYCLES, THOUSANDS

Fig. 159 Predicted a vs. N for O/L = 1.8, N = 1000, Single Periodic Overloads, Ti 6AI-4V Titanium

SINGLE PERIODIC OVERLOAD
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t = .25 IN.

1.6-f 1
P = 800lb

POL 1000 lb, /
Pmin = 40 lb ,

1.4 O/L 1.25
N= 50 ,/ /

z 1.2o

0o,,'. DATA SPECIMEN PREDICTION

1, _- TD-25-32 -. ..
1.0, do-l- • TD-25-39

.8 II

0 100 200 300
CYCLES, THOUSANDS

Fig. 160 Predicted a vs. N for O/L = 1.25, N = 50, Single Periodic Overloads, Ti 6AI-4V Titanium

211



SINGLE PERIODIC OVERLOAD
SPECIMEN: TD-25-31
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t =.25 IN. I/ I

1.6 P = 800 Ib

POL = 1000 lb
Pmin = 40 Ib s

z O/L = 1.25
-1.4 N = 100 CYCLES

F- S*

(J .

S1.2 * 0

<
0 0

6 0 ' DATA
1.0- -- PREDICTION

0

.8 -I -- :
0 100 200 300

CYCLES, THOUSANDS

Fig. 161 Predicted a vs. N for O/L = 1.25, N = 100, Single Periodic Overloads, Ti 6AI-4V Titanium

SPECIMEN:
AD-25-19

1.6 2219-T851 ALUMINUM /
CTA, W = 2.5 IN., t =.25 IN. 0

P = 400 Ib 0 ee

- 1.4 POL = 500 Ib
Pmin= 20 'b oS

SO/L = 1.25 1I-

z 00
.j 1.2 * NOL= 2690

v g

o •.-e-''r-'- K NOL = 2180
1.0

0 DATA
"-' -- NOL = 16100 - PREDICTION

.8 1 1

560 600 650 700

CYCLES, THOUSANDS

Fig. 162 Predicted a vs. N for O/L = 1.25, Multiple Overloads, 2219-T851 Aluminum
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SPECIMEN:
AD-25-12
2219-T851 ALUMINUM

1.6 CTA, W = 2.5 IN, t =.25 IN.

P = 450Ib / .:

_Z POL = 675 lb
1.4 Pmin = 23 lb

O/L = 1.5 .1

- NOL 1730
LU

1.2 .. rz

0 "----NOL= 880

1.0 NOL 3020 • DATA
S•PREDICTION

.8 I I INI I I I

6.58 6.60 6.62 6.64

CYCLES, MILLIONS

Fig. 163 Predicted a vs. N for O/L = 1.5, Multiple Overloads, 2219-T851 Aluminum

SPECIMEN:
TD-25-1 10
Ti 6AI-4V TITANIUM
CTA, W = 2.2 IN., t = .25 IN.

P = 900 Ib

POL = 1620 Ib
Pmin = 45 lb DATA

1.0 O/L = 1.8 PREDICTION

I" 100
I-

0 200
W.8 -NOL500O

(L)

.6 i i I
100 120 140 160 180

CYCLES, THOUSANDS

Fig. 164 Predicted a vs. N for O/L = 1.8, Multiple Overloads, Ti6A1-4V Titanium
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SPECIMEN: /
AD-25-24

1.6- 2219-T851 ALUMINUM /
CTA, W = 2.5 IN. t =.25 IN./

'1.4- P = 6501b /
3" POL = 813lb Ib- 1720%J[--OL 1720

(D Pmin = 325 lb OL
;z O/L = 1.25

a- S
v 1.2-

.< •-o 1-- NoL= 3051

1.0 ,• " '"
1.0 

9 DATA

S-*I I-*-NoL= 4670 PREDICTION

.8 1 1 1
400 450 500

CYCLES, THOUSANDS

Fig. 165 Predicted a vs. N for O/L = 1.25 and R = 0.5, Multiple Overloads 2219-T851 Aluminum

1.6- SPECIMEN:
AD-25-20 6

2219-T851 ALUMINUM
CTA, W = 2.5 IN., t =.25 IN.

_ 1.4 -
C6 P = 7001b

POL = 1050Ib NOL = 640
HPmin = 3501b

Z 1.2- O/L = 1.5

r 4 [NOL= 1010

o1.0- ••• '

- * DATA

* * -•F--NOL= 1550 PREDICTION

.8

250 300 350

CYCLES, THOUSANDS

Fig. 166 Predicted a vs. N for O/L = 1.5 and R = 0.5, Multiple Overloads 2219-T851 Aluminum
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1.6-

SPECIMEN: 2

TD-25-23
Ti 6AI-4V TITANIUM

1.4 CTA, W= 2.5 IN, t=.25 IN. /
_z P = 12001b / /

POL = 1500 Ib (*.

Pmin = 600 Ib __1 - 1590

O/L = 1.25

[.--NOL 1930

< 1.0

"". --JNOL= 1590 • DATA
.8---PREDICTION

0 100 200 300
CYCLES, THOUSANDS

Fig. 167 Predicted a vs. N for O/L = 1.25 and R = 0.5, Multiple Overloads, Titanium

SPECIMEN:
TD-25-21
Ti 6AI-4V TITANIUM

1.4 CTA, W = 2.5 IN., t =.25 IN.

P = 1200lb ,"

POL = 1800 Ib

1.2 Pmin = 600 lb . 738
O/L = 1.5z -:. -----

- -

e 1.0 - -
U ~ .J *DATA

-4-1I-4-NOL= 530 -- PREDICTION

.8I I I l I I I I
0 10 20 30 40 50 60 70 80

CYCLES, THOUSANDS

Fig. 168 Predicted a vs. N for O/L = 1.5 and R = 0.5, Multiple Overloads, Titanium
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["NOL

SPECIMEN: P

AD-25-107 E i:ikLZ
2219-T851 ALUMINUM
CTA, W 2.5 IN., t =.25 IN. .NS

1.12 -NOL= 10 0/

P = 650 lb

/ POL = 1170lb
- Pmin = 32 lb

::c oO/L = 1.8
I-

z 1.10

v ODATA
0<• • PREDICTION

C-)

1.08 I I I
0 4 8 12 16

A NS, THOUSANDS

Fig. 169 Predicted a vs. A Ns for O/L = 1.8 and NOL 10, 2219-T851 Aluminum

1.20-NOL= 10
0 /

SPECIMEN: /

AD-25-109
2219-T851 ALUMINUM

C- 1.18 CTA, W = 2.5 IN., t= .25 IN.

I-: •DATA
I- -- PREDICTION

V

"o P = 550 lb
r<y 1.16- POL = 825 lb

Pmin 28 Ib
O/L = 1.5

1.14 I I
0 2 4 6 8

A NS, THOUSANDS

Fig. 170 Predicted a vs. A Ns for O/L = 1.5 and NOL 10, 2219-T851 Aluminum
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SPECIMEN:
AD-25-110 0 DATA
2219-T851 ALUMINUM PREDICTION
CTA, W = 2.5 IN., t =.25 IN.

1.04 -

NOL= 2

1.02 -

0
0

1.-00 NO L

(UL(

z .98 ANSF NOL 5 40

C-)P = ~ ~ 650 lb
< I OL =1170 lb

o .96. Pmin = 32 lb
OIL-= 1.8

.94 NO= 10
0

.92 0

S•oo - -" - - 1I"-No

.90I1
02 4 6 8 10 12

A"Ns THOUSANDS

Fig. 171 Predicted a vs. A Ns for OL = 1.8 and NOL = 2,O5 & 10, 2219-T851 Aluminum
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SPECIMEN:
TD-25-1 10
Ti 6AI-4V
CTA, W = 2.20, t = .251

P = 900 lb

1.4 POL = 1620 lb
Pmin = 45 lb
O/L = 1.8

z LOAD (Ib) .*NOLI 20

3" 16201 DATA-
F- 2(9 900-
LU J

-j 1.0- 55
• ~CYCLES10

<00

N200
.8 - N LPREDICTION

S....--• • -NOL< Nsat

.6 I

100 150 200 250

CYCLES, THOUSANDS

Fig. 172 Predicted a vs. N for O/L = 1.8 and NOL < Nsat, Ti 6AI-4V Titanium

SPECIMEN:
TD-25-111
Ti 6AI-4V
CTA, W = 2.194, t = .250

P = 900 lb

POL = 1620 lb
Pmin = 45 lb

z LOAD (Ib) H-NoL
S1.3 A 2000

- 1620 PREDICTION

S20 0 0
-j 1.1 9005 200 50
SCYCLES 100

cc: 50C' 20 L / "\ ..

.9 10 20 DATA

NOL 2 5•I
NOL= . NOL < Nsat

.7 - ' I- .
60 80 100 120 140 160 180 200 220

CYCLES, THOUSANDS

Fig. 173 Predicted a vs. N for O/L = 1.8 and NOL < Nsat, Ti 6AI-4V Titanium
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1.4 MULTIPLE PERIODIC OVERLOADS 0

SPECIMEN: AD-25-55 /
2219-T851 ALUMINUM /

1.3 CTA, W = 2.5 IN., t =.25 IN. o
O/L= 1.25

/

1.2 0 /

-0 -

I-- 1.1 -

0u 0 DATA

So - -- PREDICTION
1.0 o__

Pmax Pmin CYCLES
o (Ib) (Ib) PER

.9 BLOCK
688 128 100

550 28 1000

.8 I L L j

0 25 50 75 100

BLOCKS

Fig. 174 Predicted B for O/L = 1.25 and NoL/N = 100/1000,

MULTIPLE PERIODIC OVERLOADS 0
SPECIMEN: AD-25-51 /o

1.3 2219-T851 ALUMINUM 0

CTA, W= 2.5 IN., t= .25 IN. 0/
O/L= 1.25 /

1.2 0/

-- 1 .1

z 0" 0 DATA
U. /-- PREDICTION

19.o1.0 o/
<
cc Pmax Pmin CYCLES

(Ib) (Ib) PER
BLOCK

688 28 500
550 28 5000

.8 L
0 4 8 12 16

BLOCKS
Fig. 175 Predicted a vs. B for O/L = 1.25 and NOL/N = 500/5000,

219



1.4 MULTIPLE PERIODIC OVERLOADS
SPECIMEN: AD-25-47
2219-T851 ALUMINUM

CTA, W = 2.5 IN., t =.25 IN.

1.3 O/L = 1.25

/0
R=0.5/

z1.2-//

/0

z 1.1 70 DATA
-J 7 PREDICTION

"lo

S1.0 max CYCLES

S(Ib) (lb) PER
_ _ _ BLOCK

688 275 200

550 275 1000

.8 I I I I I I

0 40 80 120 160 200 240 280 320

BLOCKS

Fig. 176 Predicted a vs. B for O/L = 1.25 and NOL/N = 200/1000, R = 0.5,

Multiple Periodic Overloads, 2219-T851 Aluminum

MULTIPLE PERIODIC OVERLOADS /
1.3- SPECIMEN: AD-25-53

2219-T851 ALUMINUM
CTA, W = 2.5 IN., t =.25 IN.

O/L = 1.25
R 0.5 A;• 1.21

F-

.1 ,0 DATA

7'- PREDICTION

0

Pmax Pmin CYCLES
I 0b) (Ib) PER

/ BLOCK

.9 F/ 1031 413 1000

825 413 5000

"08 4 8 12 16

BLOCKS
Fig. 177 Predicted a vs. B for O/L = 1.25 and NOL/N = 1000/5000, R = 0.5,

Multiple Periodic Overloads, 2219-T851 Aluminum
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1.4 MULTIPLE PERIODIC OVERLOADS

SPECIMEN: AD-25-57 0
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t = .25 IN. 0

1.3 O/L =1.5 /
0/

S1.2O

o o /

00
z'" -
"-J 1.1 O0 •
o a-

C< 0
0 DATA

0 PREDICTION

0 a- Pmax Pmin CYCLES
(Ib) (Ib) PER

.9- _ _"BLOCK

.9 825 28 100
550 28 500

.8 I I I I I I
0 20 40 60 80 100 120 140 160

BLOCKS
Fig. 178 Predicted a vs. B for O/L = 1.5 and NOL/N = 100/500, Multiple Periodic Overloads,

2219-T851 Aluminum
1.3 / 0

/
MULTIPLE PERIODIC OVERLOADS 0 0
SPECIMEN: AD-25-59 /

z; 1.2 2219-T851 ALUMINUM 0
-- CTA, W = 2.5 IN., t = .25 IN.

arO/L 1.5 0

I- -0z 1.1
w -

S0 ODATA
o .0- PREDICTION

O 1.0 P Pmax Pmin CYCLES

S(Ib) (Ib) PER

__ _ _ BLOCK
0 825 28 200

09 - 550 28 1000

.8 I I I I I I I

0 10 20 30 40 50 60 70 80 90

BLOCKS
Fig. 179 Predicted a vs. B for O/L = 1.5 and NoL/N 200/1000, Multiple Periodic Overloads,

2219-T851 Aluminum
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1.4 MULTIPLE PERIODIC OVERLOADS
SPECIMEN: AD-25-34
2219-T851 ALUMINUM
CTA, W = 2.5 IN., t = .25 IN.

1.3 O/L =1.5 /
7

7
0

S1.2 -

S-4-

A * DATAz 1.1uz 11- PREDICTION

cc

-J 0-

0 1.0 -
1Pmax Pmin CYCLES

(Ib) (Ib) PER
BLOCK

825 28 100
550 28 1000

.8II1 I I I I1
0 10 20 30 40 50 60 70 80

BLOCKS

Fig. 180 Predicted a vs. B for O/L = 1.5 and NOL/N = 100/1000,

Pmax Pmin CYCLES SPECIMEN:
(Ib) (Ib) PER TD-25-54

BLOCK Ti 6AI-4V TITANIUM

1350 45 50 CTA, W = 2.5 IN., t =.25 IN.
-_ 900 45 500 O/L 1.5

i1.2 DATA
0
z

PREDICTION
o 1.0

.8'
0 100 200 300

BLOCKS

Fig. 181 Predicted a vs. B for O/L = 1.5 and NOL/N = 50/500,
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SPECIMEN:
TD-25-50
Ti 6AI-4V TITANIUM

-Pmax -mi~mn CYCLES CTA, W = 2.5 IN., t =.25 IN.~max min CCLESOIL = 1.5
(Ib) (Ib) PER

BLOCK

1.4 1350 45 100
900 45 1000

•. 1.2 S~DATA
QI.-

zLJ

v 1.0o

ccN PREDICTION

.8 . I I I I I II

0 20 40 60 80 100 120 140 160

BLOCKS

Fig. 182 Predicted a vs. B for O/L = 1.5 and NOL/N = 100/1000, Multiple Periodic Overloads, Ti 6AI-4V Titanium

SPECIMEN:

TD-25-52
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t= .25 IN.

Pmax Pmin CYCLES O/L 1.5
(lib) 0ib) PER

BLOCK

z 1.4 1350 45 200
- 900 45 1000

z 1.2DII •zu PREDICTION

C-)
<• •• DATA

o 1.0

.8 I I I I I I

0 20 40 60 80 100 120 140

BLOCKS

Fig. 183 Predicted a vs. B for O/L 1.5 and NOL/N = 200/1000, Multiple Periodic Overloads, Ti 6AI-4V Titanium
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SPECIMEN:
TD-25-46
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t =.25 IN.
O/L = 1.25

Pmax Pmin CYCLES
(Ib) (Ib) PER

BLOCK
1125 45 100
900 45 1000

1.4-

'" 1.2- DATA

z
LU
-J

v 1.0- -i 

~- 
- - --cc- PREDICTION.

.8 ---- I I I I

0 10 20 30 40 50 60 70 80 90
BLOCKS

Fig. 184 Predicted a vs. B for O/L = 1.25 and NOL/N = 100/1000, Multiple Periodic Overloads,
Ti 6AI-4V Titanium

SPECIMEN:
TD-25-56
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t .25 IN.
O/L = 1.25

Pmax Pmin CYCLES
1.4- (Ib) (Ib) PER DATA

clý 1125 45 500

3" 900 45 5000
1.2-

<10

w PREDICTION

C-V

.8 • ' II IIII I0 10 12 14 16 18 20 22 24
BLOCKS

Fig. 185 Predicted a vs. B for O/L = 1.25 and NOL/N = 500/5000, Multiple Periodic Overloads,
Ti 6AI-4V Titanium
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SPECIMEN:
TD-25-58
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t = .25 IN.
O/L = 1.25

1.4 Pmax Pmin CYCLES

(Ib) (Ib) PER DATA ,e
Z; BLOCK

S1.2 1350 45 100
: 900 45 500

PREDICTIONzw
-J

1.0

.8 I I
0 40 80 120 160 200 240 280

BLOCKS

Fig. 186 Predicted a vs. B for O/L = 1.5 and NOL/N = 100/500,

Multiple Periodic Overloads, Ti 6AI-4V Titanium

SPECIMEN:
TD-25-48
Ti 6AI-4V TITANIUM
CTA, W = 2.5 IN., t = .25 IN.
O/L = 1.25
R = .70

1.4 Pmax Pmin CYCLES PREDICTION DATA

(ib) (ib) PER
BLOCK

2250 1260 200
3 1.2 1800 1260 1000

z -
-J

1.0

.8 I IIII II

0 20 40 60 80 100 120 140 160

BLOCKS

Fig. 187 Predicted a vs. B for O/L = 1.25 and NOL/N = 200/1000,

R = 0.7, Multiple Periodic Overloads, Ti 6AI-4V Titanium
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BLOCK LOADING - HIGH-LOW
2219-T851 ALUMINUM SPECIMEN
CTB, W =2.5 IN., t =.25 IN. / AG-25-06

1.4 - Pmax Pmin CYCLES

(Ib) (Ib) PER
-Z BLOCK

C6 750 25 1000

Z 500 25 3000
z
LU
-J

o 1.0 •
rr DATA

PREDICTION

.8

0 10 20 30

BLOCKS

Fig. 188 Predicted a vs. B for High-Low Block Loading, 2219-T851 Aluminum

BLOCK LOADING - LOW-HIGH
2219-T851 ALUMINUM

1.6 CTB, W= 2.5 IN., t =.25 IN. 0 AG-25-09

Pmax Pmin CYCLES / 0
1.4 (Ib) (Ib) PER I SPECIMEN: 0

50 BLOCK AG-25-08 o 0
650 25 3000 0

625 25 2000 t O

1.2- 750 25 1000 0/

LU
-J / g0

10 / 00

0 00o< 1.0- 0

0 0 0 DATA
0 000

. O8 00 PREDICTION

.8 f 0"

0 20 40 60
BLOCKS

Fig. 189 Predicted a vs. B for Low-High Block Loading, 2219-T851 Aluminum
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BLOCK LOADING - RANDOM
2219-T851 ALUMINUM SPECIMEN:
CTB, W = 2.5 IN., t = .25 IN. AG-25-04 AG-25-05

1.6 Pmax Pmin CYCLES* 0

(Ib) (Ib) PER
____ ____ BLOCK 0, /

1A4 750 25 100
625 25 200 0 /

S500 25 300 /
1.2J *RANDOMIZED /v 1.2 El

1.0 00 , 0/ /

1.0

0 6,0 DATA
0 -r PREDICTION

0 100 200 300

BLOCKS

Fig. 190 Predicted a vs. B for Block Random Loading, 2219-T851 Aluminum

BLOCK LOADING -
2219-T851 ALUMINUM
CTB, W 2.5 IN., t = .25 IN.

AG-25 Pmax Pmin CYCLES SEQUENCE
(Ib) (Ib) PER

1.6 BLOCK
1250 500 1000

-22 1125 500 2000 HIGH

1000 500 3000 LOW AG-2523
1.4 1000 500 3000 /

-23 1125 500 2000 LOW

S1250 500 1000 HIGH /
(D 1.2 DATASSPECIMEN: 0 DA
W AG-25-22 / •, 0 AG-25-22

•,,e E0 AG-25-23
(SOLID SYMBOLS

cc 1.0 5 INDICATE WHERE
LOAD WAS REDUCED
TO ZERO)

i- - PREDICTION
".8 '• i ~ EXCLUDING ZERO

LOAD EXCURSIONS

0 4 8 12 16

BLOCKS

Fig. 191 Predicted a vs. B for High-Low and Low-High Block Loading, Rmin = 0.5, 2219-T851 Aluminum

227



BLOCK LOADING - RANDOM
2219-T851 ALUMINUM
CTB, W = 2.5 IN., t =.25 IN.

1.6 Pmax Pmm CYCLES* AG-25-28 AG-25-24

(Ib) (Ib) PER 0 0 0

BLOCK I0
1250 500 100 0

1.4 1125 500 200 /0
1000 500 300 E

I0
1.2 *RANDOMIZED /

, 00 DATA
2 

(SOLID SYMBOLS
o -INDICATE WHERE

.1. LOAD WAS REDUCED
o 1.0 N TO ZERO)

0 , -•. O PREDICTION,
0 o EXCLUDING ZERO

.8] 0 LOAD EXCURSIONS

0 20 40 60 80 100 120 140
B LOCKS

Fig. 192 Predicted a vs. B for Block Random Loading, Rmin =0.5, 2219-T851 Aluminum

BLOCK LOADING - LOW-HIGH, 4 LEVELS
2219-T851 ALUMINUM

1.6 CTB, W= 2.5 IN., t =.25 IN.

Pmax Pmin CYCLES
(Ib) (Ib) PER AG-25-25

BLOCK 0
z 1.4 500 25 3000 /
""6 625 25 2000 /0
S750 25 1000 / 0
F- 1000 25 1 0
D I/2! 1.2 0
-J /0

/ 0

-•1.0 0 0 0 DATA
0 PREDICTIONSo0

0 0

0 20 40 60

BLOCKS

Fig. 193 Predicted a vs. B for 4 Level Low-High Block Loading, 2219-T851 Aluminum
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BLOCK LOADING - LOW-HIGH
Ti 6AI-4V TITANIUM
CTB, W= 2.5 IN., t =.25 IN.

SPECIMEN:

"Pmax Pmin CYCLES

S (Ib) (Ib) PER
BLOCK

1.4 - 500 25 3000 0

z/ 625 25 2000

750 25 1000

S1.2 Iz
UJ-

o !

c10 / 0
0• / DATA

- - PREDICTION

0 200 400 600
BLOCKS

Fig. 194 Predicted a vs. B for Low-High Block Loading, Ti 6AI-4V Titanium

BLOCK LOADING - LOW-HIGH
Ti 6AI-4V TITANIUM (b) (min CYLES
CTB, W= 2.5 IN., t =.25 IN. (Ib) (Ib) PERCT=W__________ BLOCK

800 40 3000
1000 40 2000

1.6- 1200 40 1000 e SPECIMEN:1 1 TG-25-09

I 0

.1.4 /

1.2 -z /

51.0 7 0 0 DATA
S -- PREDICTION

4.8"80 20 40 60 80

BLOCKS

Fig. 195 Predicted a vs. B for Low-High Block Loading, Ti 6AI-4V Titanium
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BLOCK LOADING - HIGH-LOW
Ti 6AI-4V TITANIUM
CTB, W = 2.5 IN,, t =.25 IN.

SPECIMEN: TG-25-08 TG-25-07

1.5Pmax Pmin CYCLES 0

(Ib) (Ib) PER
BLOCK /

1200 40 1000 0
1.3 1000 40 2000 /

800 40 3000 / 0

u" / [-6

( 0

j 0 0

C- .9 ",

0,0 DATA
-- PREDICTION

7)I I I I I I

0 10 20 30 40 50 60 70 80
BLOCKS

Fig. 196 Predicted a vs. B for High-Low Block Loading, Ti 6AI-4V Titanium

BLOCK LOADING - RANDOM SPECIMEN: TG-25-05 TG-25-04

Ti 6AI-4V TITANIUM 0l 0
CTB, W = 2.5 IN., t =.25 IN.

1.6 E0
Pmax Pmin CYCLES* 0
(Ib) (Ib) PER

__B __ LOCK 0
1.4 1200 120 300 /

_ 1000 100 200 0
800 8 0 /

*RANDOMIZED 0 /

Z 1.2 0 0

01.0 0 E

C'1.0 0"

0,0E1 DATA
--- PREDICTION

.8
0 100 200 300 400

BLOCKS

Fig. 197 Predicted a vs. B for Block Random Loading, Ti 6AI-4V Titanium
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BLOCK LOADING
Ti 6AI-4V TITANIUM SPECIMEN:

1.6 CTB, W 2.5 IN., t = .25 IN. TG-25-22

TG-25 Pmax Pmin CYCLES
(Ib) (Ib) PER 0

BLOCK
1600 400 1000

1.4 -21 1400 400 2000 T
z 1200 400 3000 / 0TG-25-21 O

1e 200 400 3000
-22 1400 400 200 DATA

" 1.2 -1600 400 1000 0 0 TG-25-21
"z0 [] TG-25-22

00 (SOLID SYMBOLS
o INDICATE WHERE
< 1.0 -.AJK# 0 LOAD WAS REDUCED

CC 0
U 0 TO ZERO)

000 -- PREDICTION,
.8 .1- OEXCLUDING ZERO

0 0 • •OLOAD EXCURSIONS

0 10 20 30
BLOCKS

Fig. 198 Predicted a vs. B for High-Low and Low-High Block Loading,
Rmin = 0.333, Ti 6AI-4V Titanium

BLOCK LOADING - RANDOM
Ti 6AI-4V TITANIUM 0

1.6 CTB, W = 2.5 IN., t =.25 IN. SPECIMEN:

Pmax Pmin CYCLES* TG-25-23 0(Ib) (Ib) PER(1) 0 ) BLOCK ]

1.4 1600 400 100 0/

S1400 400 200
1200 400 300 0/

1.2 *RANDOMIZED 0*1.120 0

z DATA
,,0 0 (SOLID SYMBOLS

000 O INDICATE WHERE
< 1.0 .0 LOAD WAS REDUCED

0 TO ZERO)

0-- PREDICTION,

.8 EXCLUDING ZERO
LOAD EXCURSIONS

0 100 200 300

BLOCKS

Fig. 199 Predicted a vs. B for Block Random Loading, Rmin = 0.333, Ti 6AI-4V Titanium
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BLOCK LOADING - 4 LEVEL
Ti 6AI-4V TITANIUM

CTB, W = 2.5 IN., t = .25 IN.

TG-25 Pmax Pmin CYCLES

(Ib) (Ib) PER
BLOCK

800 40 3000
-19a 1000 40 2000

1200 40 1000
1600 40 1

1600 40 1
-18 1200 40 1000

1000 40 2000

800 40 3000 o

SPECIMEN: I I "°

z 1.4 TG-25-18 //TG-25-19A 00

(D 1.2 -•z
/ 00 O

o 1.0- DATA
C c TG-25-19a

So o 0 0 TG-25-18

.8 e.0 €) 0 * 3 0 --P PREDICTION

II I I
0 20 40 60 80

BLOCKS,

Fig. 200 Predicted a vs. B for High-Low and Low-High 4 Level Block Loading, Ti 6AI-4V Titanium

1.0- BLOCK LOADING - FIGHTER SPECTRUM

2219-T851 ALUMINUM
CCP, W = 6.01 IN., t =.251 IN. 6

.9 - SPECIMEN: S

AG-25-15p

C6 0

S.8 -•8 64 LEVELS

z PER BLOCK
-j

- .7 . 66 LEVELS
0 0 PER BLOCKCr

.6.00 0DATA

-PREDICTION

0 10 20 30

BLOCKS

Fig. 201 Predicted a vs. B for Fighter Spectrum, 2219-T851 Aluminum
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1.0- BLOCK LOADING - FIGHTER SPECTRUM
Ti 6AI-4V TITANIUM
CCP, W = 6.01 IN., t = .284 IN.
SPECIMEN:
TG-25-3P /LVL

64 LEVELS 66/ "
PEPERLBLOCK

PER BLOCK/ /

° ///
.- I

,I,w ,/
C).7 -

• DATA

.6 / .".PREDICTION

.5 I I I I I I
250 270 290 310

BLOCKS

Fig. 202 Predicted a vs. B for Fighter Spectrum, Ti 6AI-4V Titanium

6.
SPECIMEN: 4.i5'2.0- SPECIMEN: CONSTANT AMPLITUDE I4.5
2219-T851 ALUMINUM 6 ksi, R =-1CCP, W = 6.0 IN., t= .25 IN. 

1.5

S 6ksi 4.5
Smin = .3 ksi 3.

1 INDICATES (1)CYCLE DATA /4 6.45

OF COMPRESSION
LOAD APPLIED. VALUE 1.5
SHOWN IS MAGNITUDE 6.

,z, 10_INKSI . 5.-1 1.5 ? 1 L T •_.•
L 4.5 6.'• -•,CONSTANT AMPLITUDE

CC 1 5 3. •o {•='' S = 6 ksi, R =.05

"" •- PREDICTION
.5

0[
0 550 600 650 700

CYCLES, THOUSANDS

Fig. 203 Predicted a vs. N for Occasional Compression Loads, 2219-T851 Aluminum
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SPECIMEN:
AG-25-9P
2219-T851 ALUMINUM

CCP, W = 6.0 IN., t =.25 IN.

2.0 S = 10 ksi
Smin = 0.5 ksi

PREDICTION

Z INDICATES ONE CYCLE
SOF COMPRESSION LOAD

3' 1.5 APPLIED. VALUE SHOWN
H- IS MAGNITUDE IN ksi

z DATAw
u15

0
< 1.0 10

.5

480 490 500 510

CYCLES, THOUSANDS

Fig. 204 Predicted a vs. N for Occasional Compression Loads, 2219-T851 Aluminum

2.5

SPECIMEN: 20

TG-25-1 P
Ti 6AI-4V TITANIUM
CCP, W = 6.0 IN., t = .25 IN.

10

2.0 S = 10 ksi

Smin = 0.5 ksi

SINDICATES 

ONE CYCLE 20

OF COMPRESSION STRESS(-
Z 1.5 APPLIED. VALUE SHOWN
J IS MAGNITUDE IN ksi 10

5,;
r-,

m
0

1.0 20

5• •I " DATA

-- PREDICTION.5

200 300 400

CYCLES, THOUSANDS

Fig. 205 Predicted a vs. N for Occasional Compression Loads, Ti 6AI-4V Titanium
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R FOR
COMPRESSION
SPIKE:

2.5 SPECIMEN:
TG-25-1 P

Ti 6AI-4V TITANI UM
1 CCP, W = 6. IN., t =.25 IN.

2.0 S = 10ksi
z Y -.5 Smin = .5 ksi

" 1-2
I--

z. 1.5 DATA

w .5J - CONSTANT AMPLITUDE

v -1 CALCULATION FOR
SS= 10 ksi, R =.05

U-.
- 1.0 .

* * *-2* ..

.5 -5

0 10 20 30 40 50 60 70

ANs, THOUSANDS

Fig. 206 Data vs. Constant Amplitude Growth after Occasional Compression Loads, Ti 6AI-4V Titanium
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Fig. 207 Predicted a vs. N for Tension/Compression Spike Sequences, 2219-T851 Aluminum
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Fig. 208 Predicted a vs. N for Underload/Overload Spike Sequence, 2219-T851 Aluminum
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Fig. 209 Predicted a vs. N for Overload/Underload Spike Sequences, 2219-T851 Aluminum
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